Efficient learning-based blur removal method based on sparse optimization for image restoration
In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use imag...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-03, Vol.15 (3), p.e0230619-e0230619 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0230619 |
---|---|
container_issue | 3 |
container_start_page | e0230619 |
container_title | PloS one |
container_volume | 15 |
creator | Yang, Haoyuan Su, Xiuqin Chen, Songmao Zhu, Wenhua Ju, Chunwu |
description | In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use image priors to estimate the point spread function (PSF); however, many common forms of image priors are unable to exploit local image information fully. In this paper, the proposed method does not require models of image priors. Further, it is capable of estimating the PSF accurately from a single input image. First, a blur feature in the image gradient domain is introduced, which has a positive correlation with the degree of blur. Next, the parameters for each blur type are estimated by a learning-based method using a general regression neural network. Finally, image restoration is performed using a half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method outperforms other similar methods and is suitable for dealing with motion blur in real-life applications. |
doi_str_mv | 10.1371/journal.pone.0230619 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2383784192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618721450</galeid><doaj_id>oai_doaj_org_article_ca9bf8b7355b4c63821a33a6f4145b5a</doaj_id><sourcerecordid>A618721450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8b212d88dc6877b5917177ade17c98deeb561971e1c0f704638ed9669ab08f653</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm0ubwIy7LqwMKCt9eQpEknQ9rMJu2ifnozM91lKvsgfUg5-Z3_ueScongJwRJiCj9swhh76Zfb0JslQBgQyB8Vp5BjtCAI4MdH_yfFs5Q2ANSYEfK0OMEIQVZzeFqIS2uddqYfSm9k7F3fLpRMpimVH2MZTRdupS87M6xDtu1vQl-mrYzJlGE7uM79kYPLNhti6TrZmuyVhhD31ufFEyt9Mi-m86z48eny-8WXxdX159XF-dVCE46GBVMIooaxRhNGqcqpUUipbAykmrPGGFXn8ig0UANLQUUwMw0nhEsFmCU1PiteH3S3PiQx9SYJhBmmrIIcZWJ1IJogN2Ibc6rxtwjSib0hxFbIODjtjdCSK8sUxXWtKp1jISgxlsRWsKpVLbPWxynaqDrT6Ny-KP1MdH7Tu7Vow62gEADOQBZ4NwnEcDPmdonOJW28l70J4z7vCgGOEM3om3_Qh6ubqFbmAlxvQ46rd6LinEBGUc58F3b5AJW_xnRO50GyLttnDu9nDpkZzK-hlWNKYvXt6_-z1z_n7Nsjdm2kH9Yp-HE3MmkOVgdQx5BSNPa-yRCI3R7cdUPs9kBMe5DdXh0_0L3T3eDjv2nKAqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383784192</pqid></control><display><type>article</type><title>Efficient learning-based blur removal method based on sparse optimization for image restoration</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Haoyuan ; Su, Xiuqin ; Chen, Songmao ; Zhu, Wenhua ; Ju, Chunwu</creator><contributor>Zeng, Li</contributor><creatorcontrib>Yang, Haoyuan ; Su, Xiuqin ; Chen, Songmao ; Zhu, Wenhua ; Ju, Chunwu ; Zeng, Li</creatorcontrib><description>In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use image priors to estimate the point spread function (PSF); however, many common forms of image priors are unable to exploit local image information fully. In this paper, the proposed method does not require models of image priors. Further, it is capable of estimating the PSF accurately from a single input image. First, a blur feature in the image gradient domain is introduced, which has a positive correlation with the degree of blur. Next, the parameters for each blur type are estimated by a learning-based method using a general regression neural network. Finally, image restoration is performed using a half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method outperforms other similar methods and is suitable for dealing with motion blur in real-life applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0230619</identifier><identifier>PMID: 32218591</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric models ; Atmospheric turbulence ; Biology and Life Sciences ; Cameras ; Computer and Information Sciences ; Engineering and Technology ; General regression neural networks ; Image processing ; Image restoration ; Imaging systems ; Learning ; Mechanics ; Methods ; Neural networks ; Optimization ; Optimization theory ; Parameter estimation ; Parameter identification ; Physical Sciences ; Point spread functions ; Research and Analysis Methods ; Turbulence ; Turbulent flow</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0230619-e0230619</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Yang et al 2020 Yang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8b212d88dc6877b5917177ade17c98deeb561971e1c0f704638ed9669ab08f653</citedby><cites>FETCH-LOGICAL-c692t-8b212d88dc6877b5917177ade17c98deeb561971e1c0f704638ed9669ab08f653</cites><orcidid>0000-0001-6340-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100980/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32218591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zeng, Li</contributor><creatorcontrib>Yang, Haoyuan</creatorcontrib><creatorcontrib>Su, Xiuqin</creatorcontrib><creatorcontrib>Chen, Songmao</creatorcontrib><creatorcontrib>Zhu, Wenhua</creatorcontrib><creatorcontrib>Ju, Chunwu</creatorcontrib><title>Efficient learning-based blur removal method based on sparse optimization for image restoration</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use image priors to estimate the point spread function (PSF); however, many common forms of image priors are unable to exploit local image information fully. In this paper, the proposed method does not require models of image priors. Further, it is capable of estimating the PSF accurately from a single input image. First, a blur feature in the image gradient domain is introduced, which has a positive correlation with the degree of blur. Next, the parameters for each blur type are estimated by a learning-based method using a general regression neural network. Finally, image restoration is performed using a half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method outperforms other similar methods and is suitable for dealing with motion blur in real-life applications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>Atmospheric turbulence</subject><subject>Biology and Life Sciences</subject><subject>Cameras</subject><subject>Computer and Information Sciences</subject><subject>Engineering and Technology</subject><subject>General regression neural networks</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Imaging systems</subject><subject>Learning</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization theory</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Physical Sciences</subject><subject>Point spread functions</subject><subject>Research and Analysis Methods</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm0ubwIy7LqwMKCt9eQpEknQ9rMJu2ifnozM91lKvsgfUg5-Z3_ueScongJwRJiCj9swhh76Zfb0JslQBgQyB8Vp5BjtCAI4MdH_yfFs5Q2ANSYEfK0OMEIQVZzeFqIS2uddqYfSm9k7F3fLpRMpimVH2MZTRdupS87M6xDtu1vQl-mrYzJlGE7uM79kYPLNhti6TrZmuyVhhD31ufFEyt9Mi-m86z48eny-8WXxdX159XF-dVCE46GBVMIooaxRhNGqcqpUUipbAykmrPGGFXn8ig0UANLQUUwMw0nhEsFmCU1PiteH3S3PiQx9SYJhBmmrIIcZWJ1IJogN2Ibc6rxtwjSib0hxFbIODjtjdCSK8sUxXWtKp1jISgxlsRWsKpVLbPWxynaqDrT6Ny-KP1MdH7Tu7Vow62gEADOQBZ4NwnEcDPmdonOJW28l70J4z7vCgGOEM3om3_Qh6ubqFbmAlxvQ46rd6LinEBGUc58F3b5AJW_xnRO50GyLttnDu9nDpkZzK-hlWNKYvXt6_-z1z_n7Nsjdm2kH9Yp-HE3MmkOVgdQx5BSNPa-yRCI3R7cdUPs9kBMe5DdXh0_0L3T3eDjv2nKAqQ</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Yang, Haoyuan</creator><creator>Su, Xiuqin</creator><creator>Chen, Songmao</creator><creator>Zhu, Wenhua</creator><creator>Ju, Chunwu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6340-2689</orcidid></search><sort><creationdate>20200327</creationdate><title>Efficient learning-based blur removal method based on sparse optimization for image restoration</title><author>Yang, Haoyuan ; Su, Xiuqin ; Chen, Songmao ; Zhu, Wenhua ; Ju, Chunwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8b212d88dc6877b5917177ade17c98deeb561971e1c0f704638ed9669ab08f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>Atmospheric turbulence</topic><topic>Biology and Life Sciences</topic><topic>Cameras</topic><topic>Computer and Information Sciences</topic><topic>Engineering and Technology</topic><topic>General regression neural networks</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Imaging systems</topic><topic>Learning</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization theory</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Physical Sciences</topic><topic>Point spread functions</topic><topic>Research and Analysis Methods</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoyuan</creatorcontrib><creatorcontrib>Su, Xiuqin</creatorcontrib><creatorcontrib>Chen, Songmao</creatorcontrib><creatorcontrib>Zhu, Wenhua</creatorcontrib><creatorcontrib>Ju, Chunwu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoyuan</au><au>Su, Xiuqin</au><au>Chen, Songmao</au><au>Zhu, Wenhua</au><au>Ju, Chunwu</au><au>Zeng, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient learning-based blur removal method based on sparse optimization for image restoration</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0230619</spage><epage>e0230619</epage><pages>e0230619-e0230619</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use image priors to estimate the point spread function (PSF); however, many common forms of image priors are unable to exploit local image information fully. In this paper, the proposed method does not require models of image priors. Further, it is capable of estimating the PSF accurately from a single input image. First, a blur feature in the image gradient domain is introduced, which has a positive correlation with the degree of blur. Next, the parameters for each blur type are estimated by a learning-based method using a general regression neural network. Finally, image restoration is performed using a half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method outperforms other similar methods and is suitable for dealing with motion blur in real-life applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32218591</pmid><doi>10.1371/journal.pone.0230619</doi><tpages>e0230619</tpages><orcidid>https://orcid.org/0000-0001-6340-2689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-03, Vol.15 (3), p.e0230619-e0230619 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2383784192 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial neural networks Atmospheric models Atmospheric turbulence Biology and Life Sciences Cameras Computer and Information Sciences Engineering and Technology General regression neural networks Image processing Image restoration Imaging systems Learning Mechanics Methods Neural networks Optimization Optimization theory Parameter estimation Parameter identification Physical Sciences Point spread functions Research and Analysis Methods Turbulence Turbulent flow |
title | Efficient learning-based blur removal method based on sparse optimization for image restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20learning-based%20blur%20removal%20method%20based%20on%20sparse%20optimization%20for%20image%20restoration&rft.jtitle=PloS%20one&rft.au=Yang,%20Haoyuan&rft.date=2020-03-27&rft.volume=15&rft.issue=3&rft.spage=e0230619&rft.epage=e0230619&rft.pages=e0230619-e0230619&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0230619&rft_dat=%3Cgale_plos_%3EA618721450%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383784192&rft_id=info:pmid/32218591&rft_galeid=A618721450&rft_doaj_id=oai_doaj_org_article_ca9bf8b7355b4c63821a33a6f4145b5a&rfr_iscdi=true |