Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis
Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relap...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-03, Vol.15 (3), p.e0230219-e0230219 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0230219 |
---|---|
container_issue | 3 |
container_start_page | e0230219 |
container_title | PloS one |
container_volume | 15 |
creator | Seccia, Ruggiero Gammelli, Daniele Dominici, Fabio Romano, Silvia Landi, Anna Chiara Salvetti, Marco Tacchella, Andrea Zaccaria, Andrea Crisanti, Andrea Grassi, Francesca Palagi, Laura |
description | Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only "real world" data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given "confidence threshold". For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how "real world" data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values. |
doi_str_mv | 10.1371/journal.pone.0230219 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2380031673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618077695</galeid><doaj_id>oai_doaj_org_article_61d3343918cc4bf8b6255c106725ff9a</doaj_id><sourcerecordid>A618077695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-78e64fd68f0a99b65edaca1b5f2f0ea063da6207557230b2e6dd6d8495ec4be23</originalsourceid><addsrcrecordid>eNqNk0uL2zAQx01p6W7TfoPSGgqlPSTVI5btS2EJfQQWFvq6ClkaJQqy5Epy6V762atssktc9lB8kBn95j8PzRTFc4wWmNb43c6PwQm7GLyDBSIUEdw-KM5xS8mcEUQfnvyfFU9i3CFU0Yaxx8UZzSyrMDkv_qy8i0ZBMG5TDiIZcKmU1jgjhS23JiYfrkvTD0KmWA4QtA-9cBJKr8teyK1xUFoQwe0Feq_AxtK4cgigjEx7o8yJxgM_2mQGC2WUFoKPJj4tHmlhIzw7nrPi-8cP31af55dXn9ari8u5ZC1J87oBttSKNRqJtu1YBUpIgbtKE41AIEaVyHXWVVXnRnQEmFJMNcu2ArnsgNBZ8fKgO1gf-bF1kRPaIEQxq2km1gdCebHjQzC9CNfcC8NvDD5suAjJ5MQ5w4rSJW1xI7O6bjpGqkpixGpSad2KrPX-GG3selAy9zQIOxGd3jiz5Rv_i9eooZTsk3lzFAj-5wgx8d5ECdYKB368yRvnoE3GZ8Wrf9D7qztSG5ELME77HFfuRfkFww2qa9ZWmVrcQ-VPQW9knjNtsn3i8HbikJkEv9NGjDHy9dcv_89e_Ziyr0_YLQibttHbMZk8rVNweQBlHqcYQN81GSO-X5PbbvD9mvDjmmS3F6cPdOd0uxf0LxotD60</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380031673</pqid></control><display><type>article</type><title>Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Seccia, Ruggiero ; Gammelli, Daniele ; Dominici, Fabio ; Romano, Silvia ; Landi, Anna Chiara ; Salvetti, Marco ; Tacchella, Andrea ; Zaccaria, Andrea ; Crisanti, Andrea ; Grassi, Francesca ; Palagi, Laura</creator><creatorcontrib>Seccia, Ruggiero ; Gammelli, Daniele ; Dominici, Fabio ; Romano, Silvia ; Landi, Anna Chiara ; Salvetti, Marco ; Tacchella, Andrea ; Zaccaria, Andrea ; Crisanti, Andrea ; Grassi, Francesca ; Palagi, Laura</creatorcontrib><description>Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only "real world" data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given "confidence threshold". For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how "real world" data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0230219</identifier><identifier>PMID: 32196512</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Biology and Life Sciences ; Clinical medicine ; Collaboration ; Computer and Information Sciences ; Datasets ; Diseases ; Engineering ; Historical account ; Indicators ; Learning algorithms ; Learning strategies ; Machine learning ; Mathematical models ; Medical prognosis ; Medical records ; Medical research ; Medicine and Health Sciences ; Mental health ; Multiple sclerosis ; Neural networks ; Neurosciences ; Parameters ; Patients ; Physical Sciences ; Physics ; Predictions ; Recall ; Recurrent neural networks ; Research and Analysis Methods ; Setting (Literature) ; Support vector machines ; Time ; Variables</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0230219-e0230219</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Seccia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Seccia et al 2020 Seccia et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-78e64fd68f0a99b65edaca1b5f2f0ea063da6207557230b2e6dd6d8495ec4be23</citedby><cites>FETCH-LOGICAL-c692t-78e64fd68f0a99b65edaca1b5f2f0ea063da6207557230b2e6dd6d8495ec4be23</cites><orcidid>0000-0001-5292-1774 ; 0000-0002-0169-8397 ; 0000-0003-0499-8843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083323/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083323/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seccia, Ruggiero</creatorcontrib><creatorcontrib>Gammelli, Daniele</creatorcontrib><creatorcontrib>Dominici, Fabio</creatorcontrib><creatorcontrib>Romano, Silvia</creatorcontrib><creatorcontrib>Landi, Anna Chiara</creatorcontrib><creatorcontrib>Salvetti, Marco</creatorcontrib><creatorcontrib>Tacchella, Andrea</creatorcontrib><creatorcontrib>Zaccaria, Andrea</creatorcontrib><creatorcontrib>Crisanti, Andrea</creatorcontrib><creatorcontrib>Grassi, Francesca</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><title>Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only "real world" data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given "confidence threshold". For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how "real world" data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Clinical medicine</subject><subject>Collaboration</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Diseases</subject><subject>Engineering</subject><subject>Historical account</subject><subject>Indicators</subject><subject>Learning algorithms</subject><subject>Learning strategies</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical prognosis</subject><subject>Medical records</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mental health</subject><subject>Multiple sclerosis</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Parameters</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Predictions</subject><subject>Recall</subject><subject>Recurrent neural networks</subject><subject>Research and Analysis Methods</subject><subject>Setting (Literature)</subject><subject>Support vector machines</subject><subject>Time</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0uL2zAQx01p6W7TfoPSGgqlPSTVI5btS2EJfQQWFvq6ClkaJQqy5Epy6V762atssktc9lB8kBn95j8PzRTFc4wWmNb43c6PwQm7GLyDBSIUEdw-KM5xS8mcEUQfnvyfFU9i3CFU0Yaxx8UZzSyrMDkv_qy8i0ZBMG5TDiIZcKmU1jgjhS23JiYfrkvTD0KmWA4QtA-9cBJKr8teyK1xUFoQwe0Feq_AxtK4cgigjEx7o8yJxgM_2mQGC2WUFoKPJj4tHmlhIzw7nrPi-8cP31af55dXn9ari8u5ZC1J87oBttSKNRqJtu1YBUpIgbtKE41AIEaVyHXWVVXnRnQEmFJMNcu2ArnsgNBZ8fKgO1gf-bF1kRPaIEQxq2km1gdCebHjQzC9CNfcC8NvDD5suAjJ5MQ5w4rSJW1xI7O6bjpGqkpixGpSad2KrPX-GG3selAy9zQIOxGd3jiz5Rv_i9eooZTsk3lzFAj-5wgx8d5ECdYKB368yRvnoE3GZ8Wrf9D7qztSG5ELME77HFfuRfkFww2qa9ZWmVrcQ-VPQW9knjNtsn3i8HbikJkEv9NGjDHy9dcv_89e_Ziyr0_YLQibttHbMZk8rVNweQBlHqcYQN81GSO-X5PbbvD9mvDjmmS3F6cPdOd0uxf0LxotD60</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Seccia, Ruggiero</creator><creator>Gammelli, Daniele</creator><creator>Dominici, Fabio</creator><creator>Romano, Silvia</creator><creator>Landi, Anna Chiara</creator><creator>Salvetti, Marco</creator><creator>Tacchella, Andrea</creator><creator>Zaccaria, Andrea</creator><creator>Crisanti, Andrea</creator><creator>Grassi, Francesca</creator><creator>Palagi, Laura</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5292-1774</orcidid><orcidid>https://orcid.org/0000-0002-0169-8397</orcidid><orcidid>https://orcid.org/0000-0003-0499-8843</orcidid></search><sort><creationdate>20200320</creationdate><title>Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis</title><author>Seccia, Ruggiero ; Gammelli, Daniele ; Dominici, Fabio ; Romano, Silvia ; Landi, Anna Chiara ; Salvetti, Marco ; Tacchella, Andrea ; Zaccaria, Andrea ; Crisanti, Andrea ; Grassi, Francesca ; Palagi, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-78e64fd68f0a99b65edaca1b5f2f0ea063da6207557230b2e6dd6d8495ec4be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Clinical medicine</topic><topic>Collaboration</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Diseases</topic><topic>Engineering</topic><topic>Historical account</topic><topic>Indicators</topic><topic>Learning algorithms</topic><topic>Learning strategies</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical prognosis</topic><topic>Medical records</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mental health</topic><topic>Multiple sclerosis</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Parameters</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Predictions</topic><topic>Recall</topic><topic>Recurrent neural networks</topic><topic>Research and Analysis Methods</topic><topic>Setting (Literature)</topic><topic>Support vector machines</topic><topic>Time</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seccia, Ruggiero</creatorcontrib><creatorcontrib>Gammelli, Daniele</creatorcontrib><creatorcontrib>Dominici, Fabio</creatorcontrib><creatorcontrib>Romano, Silvia</creatorcontrib><creatorcontrib>Landi, Anna Chiara</creatorcontrib><creatorcontrib>Salvetti, Marco</creatorcontrib><creatorcontrib>Tacchella, Andrea</creatorcontrib><creatorcontrib>Zaccaria, Andrea</creatorcontrib><creatorcontrib>Crisanti, Andrea</creatorcontrib><creatorcontrib>Grassi, Francesca</creatorcontrib><creatorcontrib>Palagi, Laura</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seccia, Ruggiero</au><au>Gammelli, Daniele</au><au>Dominici, Fabio</au><au>Romano, Silvia</au><au>Landi, Anna Chiara</au><au>Salvetti, Marco</au><au>Tacchella, Andrea</au><au>Zaccaria, Andrea</au><au>Crisanti, Andrea</au><au>Grassi, Francesca</au><au>Palagi, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0230219</spage><epage>e0230219</epage><pages>e0230219-e0230219</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only "real world" data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given "confidence threshold". For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how "real world" data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32196512</pmid><doi>10.1371/journal.pone.0230219</doi><tpages>e0230219</tpages><orcidid>https://orcid.org/0000-0001-5292-1774</orcidid><orcidid>https://orcid.org/0000-0002-0169-8397</orcidid><orcidid>https://orcid.org/0000-0003-0499-8843</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-03, Vol.15 (3), p.e0230219-e0230219 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2380031673 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Artificial neural networks Biology and Life Sciences Clinical medicine Collaboration Computer and Information Sciences Datasets Diseases Engineering Historical account Indicators Learning algorithms Learning strategies Machine learning Mathematical models Medical prognosis Medical records Medical research Medicine and Health Sciences Mental health Multiple sclerosis Neural networks Neurosciences Parameters Patients Physical Sciences Physics Predictions Recall Recurrent neural networks Research and Analysis Methods Setting (Literature) Support vector machines Time Variables |
title | Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Considering%20patient%20clinical%20history%20impacts%20performance%20of%20machine%20learning%20models%20in%20predicting%20course%20of%20multiple%20sclerosis&rft.jtitle=PloS%20one&rft.au=Seccia,%20Ruggiero&rft.date=2020-03-20&rft.volume=15&rft.issue=3&rft.spage=e0230219&rft.epage=e0230219&rft.pages=e0230219-e0230219&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0230219&rft_dat=%3Cgale_plos_%3EA618077695%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380031673&rft_id=info:pmid/32196512&rft_galeid=A618077695&rft_doaj_id=oai_doaj_org_article_61d3343918cc4bf8b6255c106725ff9a&rfr_iscdi=true |