Strengthen causal models for better conservation outcomes for human well-being
Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models ar...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-03, Vol.15 (3), p.e0230495 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e0230495 |
container_title | PloS one |
container_volume | 15 |
creator | Cheng, Samantha H McKinnon, Madeleine C Masuda, Yuta J Garside, Ruth Jones, Kelly W Miller, Daniel C Pullin, Andrew S Sutherland, William J Augustin, Caitlin Gill, David A Wongbusarakum, Supin Wilkie, David |
description | Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships.
In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts.
Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data.
Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability. |
doi_str_mv | 10.1371/journal.pone.0230495 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2380031471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618077690</galeid><doaj_id>oai_doaj_org_article_31f0228783a64b6090c7737e8c8c59d9</doaj_id><sourcerecordid>A618077690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2a68cc5e452324cc61f550f9b3e102178fdf0335aecf3a766593a1adfd099a283</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLguDDjElumzQvwrL4Z2BxwVVfQya96XRom9kkXfXbm3G6yxQUJA8JN79zcrk5WfackiUFQd9u3egH3S13bsAlYUAKWT7ITqkEtuCMwMOj80n2JIQtISVUnD_OToBRyUsoTrPP19Hj0MQNDrnRY9Bd3rsau5Bb5_M1xog-N24I6G91bN2QuzEa1-MB2Iy9HvIf2HWLNbZD8zR7ZHUX8Nm0n2XfPrz_evFpcXn1cXVxfrkwXLK4YJpXxpRYlAxYYQyntiyJlWtAShgVla0tASg1GgtacF5K0FTXtiZSalbBWfby4LvrXFDTKIJiUBECtBA0EasDUTu9VTvf9tr_Uk636k_B-UZpH1vToQJqCWOVqEDzYs2JJEYIEFiZypSylsnr3fTauO6xNjhEr7uZ6fxmaDeqcbdKkAoAeDJ4NRl4dzNiiP9oeaIanbpqB-uSmenbYNQ5pxURgkuSqOVfqLRq7Nv0U2jbVJ8J3swEiYn4Mzbpt4NaXX_5f_bq-5x9fcRuUHdxE1w37lMS5mBxAI13IXi095OjRO2zfDcNtc-ymrKcZC-Op34vugsv_Aaxwe5T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380031471</pqid></control><display><type>article</type><title>Strengthen causal models for better conservation outcomes for human well-being</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Cheng, Samantha H ; McKinnon, Madeleine C ; Masuda, Yuta J ; Garside, Ruth ; Jones, Kelly W ; Miller, Daniel C ; Pullin, Andrew S ; Sutherland, William J ; Augustin, Caitlin ; Gill, David A ; Wongbusarakum, Supin ; Wilkie, David</creator><contributor>Vincenot, Christian</contributor><creatorcontrib>Cheng, Samantha H ; McKinnon, Madeleine C ; Masuda, Yuta J ; Garside, Ruth ; Jones, Kelly W ; Miller, Daniel C ; Pullin, Andrew S ; Sutherland, William J ; Augustin, Caitlin ; Gill, David A ; Wongbusarakum, Supin ; Wilkie, David ; Vincenot, Christian</creatorcontrib><description>Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships.
In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts.
Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data.
Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0230495</identifier><identifier>PMID: 32196534</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Conservation ; Ecological effects ; Ecology and Environmental Sciences ; Ecosystems ; Environmental sustainability ; Hypotheses ; Intervention ; Medicine and Health Sciences ; Nature ; Nature conservation ; Objectives ; Psychological aspects ; Research and Analysis Methods ; Retirement benefits ; Social Sciences ; Social-ecological systems ; Sustainability ; Sustainable development ; System effectiveness ; Theory ; Well being</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0230495</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2a68cc5e452324cc61f550f9b3e102178fdf0335aecf3a766593a1adfd099a283</citedby><cites>FETCH-LOGICAL-c692t-2a68cc5e452324cc61f550f9b3e102178fdf0335aecf3a766593a1adfd099a283</cites><orcidid>0000-0003-1649-4773 ; 0000-0003-1799-6310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083336/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083336/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vincenot, Christian</contributor><creatorcontrib>Cheng, Samantha H</creatorcontrib><creatorcontrib>McKinnon, Madeleine C</creatorcontrib><creatorcontrib>Masuda, Yuta J</creatorcontrib><creatorcontrib>Garside, Ruth</creatorcontrib><creatorcontrib>Jones, Kelly W</creatorcontrib><creatorcontrib>Miller, Daniel C</creatorcontrib><creatorcontrib>Pullin, Andrew S</creatorcontrib><creatorcontrib>Sutherland, William J</creatorcontrib><creatorcontrib>Augustin, Caitlin</creatorcontrib><creatorcontrib>Gill, David A</creatorcontrib><creatorcontrib>Wongbusarakum, Supin</creatorcontrib><creatorcontrib>Wilkie, David</creatorcontrib><title>Strengthen causal models for better conservation outcomes for human well-being</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships.
In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts.
Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data.
Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Conservation</subject><subject>Ecological effects</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystems</subject><subject>Environmental sustainability</subject><subject>Hypotheses</subject><subject>Intervention</subject><subject>Medicine and Health Sciences</subject><subject>Nature</subject><subject>Nature conservation</subject><subject>Objectives</subject><subject>Psychological aspects</subject><subject>Research and Analysis Methods</subject><subject>Retirement benefits</subject><subject>Social Sciences</subject><subject>Social-ecological systems</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>System effectiveness</subject><subject>Theory</subject><subject>Well being</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLguDDjElumzQvwrL4Z2BxwVVfQya96XRom9kkXfXbm3G6yxQUJA8JN79zcrk5WfackiUFQd9u3egH3S13bsAlYUAKWT7ITqkEtuCMwMOj80n2JIQtISVUnD_OToBRyUsoTrPP19Hj0MQNDrnRY9Bd3rsau5Bb5_M1xog-N24I6G91bN2QuzEa1-MB2Iy9HvIf2HWLNbZD8zR7ZHUX8Nm0n2XfPrz_evFpcXn1cXVxfrkwXLK4YJpXxpRYlAxYYQyntiyJlWtAShgVla0tASg1GgtacF5K0FTXtiZSalbBWfby4LvrXFDTKIJiUBECtBA0EasDUTu9VTvf9tr_Uk636k_B-UZpH1vToQJqCWOVqEDzYs2JJEYIEFiZypSylsnr3fTauO6xNjhEr7uZ6fxmaDeqcbdKkAoAeDJ4NRl4dzNiiP9oeaIanbpqB-uSmenbYNQ5pxURgkuSqOVfqLRq7Nv0U2jbVJ8J3swEiYn4Mzbpt4NaXX_5f_bq-5x9fcRuUHdxE1w37lMS5mBxAI13IXi095OjRO2zfDcNtc-ymrKcZC-Op34vugsv_Aaxwe5T</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Cheng, Samantha H</creator><creator>McKinnon, Madeleine C</creator><creator>Masuda, Yuta J</creator><creator>Garside, Ruth</creator><creator>Jones, Kelly W</creator><creator>Miller, Daniel C</creator><creator>Pullin, Andrew S</creator><creator>Sutherland, William J</creator><creator>Augustin, Caitlin</creator><creator>Gill, David A</creator><creator>Wongbusarakum, Supin</creator><creator>Wilkie, David</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1649-4773</orcidid><orcidid>https://orcid.org/0000-0003-1799-6310</orcidid></search><sort><creationdate>20200320</creationdate><title>Strengthen causal models for better conservation outcomes for human well-being</title><author>Cheng, Samantha H ; McKinnon, Madeleine C ; Masuda, Yuta J ; Garside, Ruth ; Jones, Kelly W ; Miller, Daniel C ; Pullin, Andrew S ; Sutherland, William J ; Augustin, Caitlin ; Gill, David A ; Wongbusarakum, Supin ; Wilkie, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2a68cc5e452324cc61f550f9b3e102178fdf0335aecf3a766593a1adfd099a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Conservation</topic><topic>Ecological effects</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystems</topic><topic>Environmental sustainability</topic><topic>Hypotheses</topic><topic>Intervention</topic><topic>Medicine and Health Sciences</topic><topic>Nature</topic><topic>Nature conservation</topic><topic>Objectives</topic><topic>Psychological aspects</topic><topic>Research and Analysis Methods</topic><topic>Retirement benefits</topic><topic>Social Sciences</topic><topic>Social-ecological systems</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>System effectiveness</topic><topic>Theory</topic><topic>Well being</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Samantha H</creatorcontrib><creatorcontrib>McKinnon, Madeleine C</creatorcontrib><creatorcontrib>Masuda, Yuta J</creatorcontrib><creatorcontrib>Garside, Ruth</creatorcontrib><creatorcontrib>Jones, Kelly W</creatorcontrib><creatorcontrib>Miller, Daniel C</creatorcontrib><creatorcontrib>Pullin, Andrew S</creatorcontrib><creatorcontrib>Sutherland, William J</creatorcontrib><creatorcontrib>Augustin, Caitlin</creatorcontrib><creatorcontrib>Gill, David A</creatorcontrib><creatorcontrib>Wongbusarakum, Supin</creatorcontrib><creatorcontrib>Wilkie, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Samantha H</au><au>McKinnon, Madeleine C</au><au>Masuda, Yuta J</au><au>Garside, Ruth</au><au>Jones, Kelly W</au><au>Miller, Daniel C</au><au>Pullin, Andrew S</au><au>Sutherland, William J</au><au>Augustin, Caitlin</au><au>Gill, David A</au><au>Wongbusarakum, Supin</au><au>Wilkie, David</au><au>Vincenot, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthen causal models for better conservation outcomes for human well-being</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0230495</spage><pages>e0230495-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships.
In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts.
Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data.
Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32196534</pmid><doi>10.1371/journal.pone.0230495</doi><tpages>e0230495</tpages><orcidid>https://orcid.org/0000-0003-1649-4773</orcidid><orcidid>https://orcid.org/0000-0003-1799-6310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-03, Vol.15 (3), p.e0230495 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2380031471 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analysis Biology and Life Sciences Conservation Ecological effects Ecology and Environmental Sciences Ecosystems Environmental sustainability Hypotheses Intervention Medicine and Health Sciences Nature Nature conservation Objectives Psychological aspects Research and Analysis Methods Retirement benefits Social Sciences Social-ecological systems Sustainability Sustainable development System effectiveness Theory Well being |
title | Strengthen causal models for better conservation outcomes for human well-being |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthen%20causal%20models%20for%20better%20conservation%20outcomes%20for%20human%20well-being&rft.jtitle=PloS%20one&rft.au=Cheng,%20Samantha%20H&rft.date=2020-03-20&rft.volume=15&rft.issue=3&rft.spage=e0230495&rft.pages=e0230495-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0230495&rft_dat=%3Cgale_plos_%3EA618077690%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380031471&rft_id=info:pmid/32196534&rft_galeid=A618077690&rft_doaj_id=oai_doaj_org_article_31f0228783a64b6090c7737e8c8c59d9&rfr_iscdi=true |