Reprogramming of macrophages employing gene regulatory and metabolic network models
Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment....
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-02, Vol.16 (2), p.e1007657-e1007657 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007657 |
---|---|
container_issue | 2 |
container_start_page | e1007657 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Hörhold, Franziska Eisel, David Oswald, Marcus Kolte, Amol Röll, Daniela Osen, Wolfram Eichmüller, Stefan B König, Rainer |
description | Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages. |
doi_str_mv | 10.1371/journal.pcbi.1007657 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377706386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716304</galeid><doaj_id>oai_doaj_org_article_4bba50c0a81b451b884c8ed48721d89e</doaj_id><sourcerecordid>A615716304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-e7c6ce668ddd980813adbc4f7360d46840d03fe0fdbe4145310533e577edccb43</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4lIOu9jxZy5IVVVgpQqkFs6WY09SL0m82Amw_x6HTasG9YJ88MjzzOuZ0ZtlLzFaYyLwu60fQ6_b9c5Ubo0REpyJR9kxZoysBGHy8b34KHsW4xahFJb8aXZEClQKWtDj7PoKdsE3QXed65vc13mnTfC7G91AzKHbtX4_JRroIQ_QjK0efNjnurd5B4OufOtM3sPwy4fveecttPF59qTWbYQX832Sfftw8fX80-ryy8fN-dnlyohCDCsQhhvgXFprS4kkJtpWhtaCcGQplxRZRGpAta2AYsoIRowQYEKANaai5CR7fdBNTUY17yOqggghECeSJ2JzIKzXW7ULrtNhr7x26u-DD43SYXCmBUWrSjNkkJa4ogxXUlIjwVIpCmxlCUnr_fzbWHWpA-iHoNuF6DLTuxvV-J9KIFaWbGrmdBYI_scIcVCdiwbaVvfgx6lvzgosuCgS-uYf9OHpZqrRaQDX1z79ayZRdcYxE5gTNG1p_QCVjoXOGd9D7dL7ouDtoiAxA_weGj3GqDbXV__Bfl6y9MAmf8UYoL7bHUZqsvTtkGqytJotncpe3d_7XdGth8kfkkrydQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377706386</pqid></control><display><type>article</type><title>Reprogramming of macrophages employing gene regulatory and metabolic network models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Hörhold, Franziska ; Eisel, David ; Oswald, Marcus ; Kolte, Amol ; Röll, Daniela ; Osen, Wolfram ; Eichmüller, Stefan B ; König, Rainer</creator><contributor>Wallqvist, Anders</contributor><creatorcontrib>Hörhold, Franziska ; Eisel, David ; Oswald, Marcus ; Kolte, Amol ; Röll, Daniela ; Osen, Wolfram ; Eichmüller, Stefan B ; König, Rainer ; Wallqvist, Anders</creatorcontrib><description>Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007657</identifier><identifier>PMID: 32097424</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anaerobiosis ; Animals ; Apoptosis ; Biology and Life Sciences ; Biosynthesis ; Cancer ; Cell cycle ; Cytokines ; Cytokines - metabolism ; Diseases ; Disseminated infection ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Regulatory Networks ; Genes ; Genotype & phenotype ; Glycolysis ; Health aspects ; Immunosuppression Therapy ; Immunosuppressive Agents - therapeutic use ; Infection ; Infections ; Inflammation ; Inosine monophosphate ; Inosine Monophosphate - metabolism ; Lymphocytes ; Macrophage Activation ; Macrophages ; Macrophages - metabolism ; Medical research ; Medicine and Health Sciences ; Metabolic networks ; Metabolism ; Metabolites ; Mice ; Mice, Inbred C57BL ; Myc protein ; Nitric oxide ; Pathogens ; Periodical publishing ; Phenotype ; Phenotypes ; Physiological aspects ; Polarization ; Regulators ; Sepsis ; Signatures ; Software ; Stat6 protein ; Switches ; Switching theory ; Tumor Microenvironment ; Tumors ; Urea</subject><ispartof>PLoS computational biology, 2020-02, Vol.16 (2), p.e1007657-e1007657</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Hörhold et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Hörhold et al 2020 Hörhold et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-e7c6ce668ddd980813adbc4f7360d46840d03fe0fdbe4145310533e577edccb43</citedby><cites>FETCH-LOGICAL-c727t-e7c6ce668ddd980813adbc4f7360d46840d03fe0fdbe4145310533e577edccb43</cites><orcidid>0000-0002-3497-6904 ; 0000-0001-6691-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059956/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059956/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32097424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wallqvist, Anders</contributor><creatorcontrib>Hörhold, Franziska</creatorcontrib><creatorcontrib>Eisel, David</creatorcontrib><creatorcontrib>Oswald, Marcus</creatorcontrib><creatorcontrib>Kolte, Amol</creatorcontrib><creatorcontrib>Röll, Daniela</creatorcontrib><creatorcontrib>Osen, Wolfram</creatorcontrib><creatorcontrib>Eichmüller, Stefan B</creatorcontrib><creatorcontrib>König, Rainer</creatorcontrib><title>Reprogramming of macrophages employing gene regulatory and metabolic network models</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.</description><subject>Anaerobiosis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Diseases</subject><subject>Disseminated infection</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genotype & phenotype</subject><subject>Glycolysis</subject><subject>Health aspects</subject><subject>Immunosuppression Therapy</subject><subject>Immunosuppressive Agents - therapeutic use</subject><subject>Infection</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Inosine monophosphate</subject><subject>Inosine Monophosphate - metabolism</subject><subject>Lymphocytes</subject><subject>Macrophage Activation</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic networks</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myc protein</subject><subject>Nitric oxide</subject><subject>Pathogens</subject><subject>Periodical publishing</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Polarization</subject><subject>Regulators</subject><subject>Sepsis</subject><subject>Signatures</subject><subject>Software</subject><subject>Stat6 protein</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Urea</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4lIOu9jxZy5IVVVgpQqkFs6WY09SL0m82Amw_x6HTasG9YJ88MjzzOuZ0ZtlLzFaYyLwu60fQ6_b9c5Ubo0REpyJR9kxZoysBGHy8b34KHsW4xahFJb8aXZEClQKWtDj7PoKdsE3QXed65vc13mnTfC7G91AzKHbtX4_JRroIQ_QjK0efNjnurd5B4OufOtM3sPwy4fveecttPF59qTWbYQX832Sfftw8fX80-ryy8fN-dnlyohCDCsQhhvgXFprS4kkJtpWhtaCcGQplxRZRGpAta2AYsoIRowQYEKANaai5CR7fdBNTUY17yOqggghECeSJ2JzIKzXW7ULrtNhr7x26u-DD43SYXCmBUWrSjNkkJa4ogxXUlIjwVIpCmxlCUnr_fzbWHWpA-iHoNuF6DLTuxvV-J9KIFaWbGrmdBYI_scIcVCdiwbaVvfgx6lvzgosuCgS-uYf9OHpZqrRaQDX1z79ayZRdcYxE5gTNG1p_QCVjoXOGd9D7dL7ouDtoiAxA_weGj3GqDbXV__Bfl6y9MAmf8UYoL7bHUZqsvTtkGqytJotncpe3d_7XdGth8kfkkrydQ</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Hörhold, Franziska</creator><creator>Eisel, David</creator><creator>Oswald, Marcus</creator><creator>Kolte, Amol</creator><creator>Röll, Daniela</creator><creator>Osen, Wolfram</creator><creator>Eichmüller, Stefan B</creator><creator>König, Rainer</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3497-6904</orcidid><orcidid>https://orcid.org/0000-0001-6691-3804</orcidid></search><sort><creationdate>20200225</creationdate><title>Reprogramming of macrophages employing gene regulatory and metabolic network models</title><author>Hörhold, Franziska ; Eisel, David ; Oswald, Marcus ; Kolte, Amol ; Röll, Daniela ; Osen, Wolfram ; Eichmüller, Stefan B ; König, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-e7c6ce668ddd980813adbc4f7360d46840d03fe0fdbe4145310533e577edccb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anaerobiosis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Diseases</topic><topic>Disseminated infection</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genotype & phenotype</topic><topic>Glycolysis</topic><topic>Health aspects</topic><topic>Immunosuppression Therapy</topic><topic>Immunosuppressive Agents - therapeutic use</topic><topic>Infection</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Inosine monophosphate</topic><topic>Inosine Monophosphate - metabolism</topic><topic>Lymphocytes</topic><topic>Macrophage Activation</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic networks</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myc protein</topic><topic>Nitric oxide</topic><topic>Pathogens</topic><topic>Periodical publishing</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Polarization</topic><topic>Regulators</topic><topic>Sepsis</topic><topic>Signatures</topic><topic>Software</topic><topic>Stat6 protein</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hörhold, Franziska</creatorcontrib><creatorcontrib>Eisel, David</creatorcontrib><creatorcontrib>Oswald, Marcus</creatorcontrib><creatorcontrib>Kolte, Amol</creatorcontrib><creatorcontrib>Röll, Daniela</creatorcontrib><creatorcontrib>Osen, Wolfram</creatorcontrib><creatorcontrib>Eichmüller, Stefan B</creatorcontrib><creatorcontrib>König, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hörhold, Franziska</au><au>Eisel, David</au><au>Oswald, Marcus</au><au>Kolte, Amol</au><au>Röll, Daniela</au><au>Osen, Wolfram</au><au>Eichmüller, Stefan B</au><au>König, Rainer</au><au>Wallqvist, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming of macrophages employing gene regulatory and metabolic network models</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1007657</spage><epage>e1007657</epage><pages>e1007657-e1007657</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32097424</pmid><doi>10.1371/journal.pcbi.1007657</doi><orcidid>https://orcid.org/0000-0002-3497-6904</orcidid><orcidid>https://orcid.org/0000-0001-6691-3804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-02, Vol.16 (2), p.e1007657-e1007657 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2377706386 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Anaerobiosis Animals Apoptosis Biology and Life Sciences Biosynthesis Cancer Cell cycle Cytokines Cytokines - metabolism Diseases Disseminated infection Gene expression Gene Expression Profiling Gene Expression Regulation Gene Regulatory Networks Genes Genotype & phenotype Glycolysis Health aspects Immunosuppression Therapy Immunosuppressive Agents - therapeutic use Infection Infections Inflammation Inosine monophosphate Inosine Monophosphate - metabolism Lymphocytes Macrophage Activation Macrophages Macrophages - metabolism Medical research Medicine and Health Sciences Metabolic networks Metabolism Metabolites Mice Mice, Inbred C57BL Myc protein Nitric oxide Pathogens Periodical publishing Phenotype Phenotypes Physiological aspects Polarization Regulators Sepsis Signatures Software Stat6 protein Switches Switching theory Tumor Microenvironment Tumors Urea |
title | Reprogramming of macrophages employing gene regulatory and metabolic network models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20of%20macrophages%20employing%20gene%20regulatory%20and%20metabolic%20network%20models&rft.jtitle=PLoS%20computational%20biology&rft.au=H%C3%B6rhold,%20Franziska&rft.date=2020-02-25&rft.volume=16&rft.issue=2&rft.spage=e1007657&rft.epage=e1007657&rft.pages=e1007657-e1007657&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007657&rft_dat=%3Cgale_plos_%3EA615716304%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377706386&rft_id=info:pmid/32097424&rft_galeid=A615716304&rft_doaj_id=oai_doaj_org_article_4bba50c0a81b451b884c8ed48721d89e&rfr_iscdi=true |