Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein

The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-02, Vol.16 (2), p.e1007710-e1007710
Hauptverfasser: Stejskal, Lenka, Lees, William D, Moss, David S, Palor, Machaela, Bingham, Richard J, Shepherd, Adrian J, Grove, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007710
container_issue 2
container_start_page e1007710
container_title PLoS computational biology
container_volume 16
creator Stejskal, Lenka
Lees, William D
Moss, David S
Palor, Machaela
Bingham, Richard J
Shepherd, Adrian J
Grove, Joe
description The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.
doi_str_mv 10.1371/journal.pcbi.1007710
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716328</galeid><doaj_id>oai_doaj_org_article_a608e8700b86497797ac584c2be653fa</doaj_id><sourcerecordid>A615716328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-ae6d230f8011bb47caf8100f399362494e5ae4397d6699e39d5cd7833e489af33</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUhW1EKkCiY8rltc7Th1t1qm9GzX_Hodsqy7qBflga_zMO37HUxSvCZ4TKsjHdRhiZ9r51tZ-TjAWguAnxSmpKjoTtJJPH5xPihcprTHOR8WfFye0JFiVrDotfl-2cOtr3_p-j0zXIN_10XfJW9T4FGIDEZkIyIYuQdxBgxyYfoiQUHDoGram971PaIF2Pg4JXZRo1e5t2MbQg-9eFs-caRO8Gvez4tflxc_Fl9nVt8_LxfnVzHJO-pkB3pQUO4kJqWsmrHEyW3JUKcpLphhUBhhVouFcKaCqqWwjJKXApDKO0rPi7VF324akx9YkXVIhBK6IIJlYHokmmLXeRr8xca-D8fpvIMSVNrH3tgVtOJYgBca15EwJoYSxlWS2rIFX1Jms9WmsNtQbaCzknpl2Ijq96fy1XoWdFphXsiyzwPtRIIabAVKvNz5ZaFvTQRgO7-aKESaFyOi7f9DH3Y3UymQDvnMh17UHUX3OSSUIp6XM1PwRKq8GNj7_MDif45OED5OEzPRw26_MkJJe_vj-H-zXKcuOrI0hpQjuvncE68N035nUh-nW43TntDcP-36fdDfO9A-GL_Sx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705171</pqid></control><display><type>article</type><title>Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Stejskal, Lenka ; Lees, William D ; Moss, David S ; Palor, Machaela ; Bingham, Richard J ; Shepherd, Adrian J ; Grove, Joe</creator><contributor>Wei, Guanghong</contributor><creatorcontrib>Stejskal, Lenka ; Lees, William D ; Moss, David S ; Palor, Machaela ; Bingham, Richard J ; Shepherd, Adrian J ; Grove, Joe ; Wei, Guanghong</creatorcontrib><description>The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007710</identifier><identifier>PMID: 32109245</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibodies ; Antibodies, Neutralizing - immunology ; Antibodies, Viral - immunology ; Antigens ; Biology and Life Sciences ; Cell surface ; Computer applications ; Computer Simulation ; Correlation analysis ; Divergence ; Epitopes - immunology ; Flexibility ; Glycoprotein E2 ; Glycoproteins ; Glycosylation ; HEK293 Cells ; Hepatitis ; Hepatitis C ; Hepatitis C - virology ; Hepatitis C virus ; Humans ; Immunoglobulins ; Infections ; Machinery ; Medicine and health sciences ; Molecular biology ; Molecular dynamics ; Molecular Dynamics Simulation ; Physical Sciences ; Protein Binding ; Protein Domains ; Proteins ; Receptors ; Research and Analysis Methods ; Scattering, Radiation ; Small angle X ray scattering ; Strains (organisms) ; Vaccine development ; Vaccines ; Viral Envelope Proteins - chemistry ; Virus Internalization ; Viruses ; X-ray scattering ; X-Rays</subject><ispartof>PLoS computational biology, 2020-02, Vol.16 (2), p.e1007710-e1007710</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Stejskal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Stejskal et al 2020 Stejskal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-ae6d230f8011bb47caf8100f399362494e5ae4397d6699e39d5cd7833e489af33</citedby><cites>FETCH-LOGICAL-c661t-ae6d230f8011bb47caf8100f399362494e5ae4397d6699e39d5cd7833e489af33</cites><orcidid>0000-0003-3805-0364 ; 0000-0003-0194-8613 ; 0000-0002-4230-0963 ; 0000-0003-4276-5346 ; 0000-0001-5390-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065822/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065822/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32109245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Guanghong</contributor><creatorcontrib>Stejskal, Lenka</creatorcontrib><creatorcontrib>Lees, William D</creatorcontrib><creatorcontrib>Moss, David S</creatorcontrib><creatorcontrib>Palor, Machaela</creatorcontrib><creatorcontrib>Bingham, Richard J</creatorcontrib><creatorcontrib>Shepherd, Adrian J</creatorcontrib><creatorcontrib>Grove, Joe</creatorcontrib><title>Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.</description><subject>Antibodies</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibodies, Viral - immunology</subject><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Cell surface</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Divergence</subject><subject>Epitopes - immunology</subject><subject>Flexibility</subject><subject>Glycoprotein E2</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>HEK293 Cells</subject><subject>Hepatitis</subject><subject>Hepatitis C</subject><subject>Hepatitis C - virology</subject><subject>Hepatitis C virus</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Infections</subject><subject>Machinery</subject><subject>Medicine and health sciences</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Research and Analysis Methods</subject><subject>Scattering, Radiation</subject><subject>Small angle X ray scattering</subject><subject>Strains (organisms)</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Viral Envelope Proteins - chemistry</subject><subject>Virus Internalization</subject><subject>Viruses</subject><subject>X-ray scattering</subject><subject>X-Rays</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUhW1EKkCiY8rltc7Th1t1qm9GzX_Hodsqy7qBflga_zMO37HUxSvCZ4TKsjHdRhiZ9r51tZ-TjAWguAnxSmpKjoTtJJPH5xPihcprTHOR8WfFye0JFiVrDotfl-2cOtr3_p-j0zXIN_10XfJW9T4FGIDEZkIyIYuQdxBgxyYfoiQUHDoGram971PaIF2Pg4JXZRo1e5t2MbQg-9eFs-caRO8Gvez4tflxc_Fl9nVt8_LxfnVzHJO-pkB3pQUO4kJqWsmrHEyW3JUKcpLphhUBhhVouFcKaCqqWwjJKXApDKO0rPi7VF324akx9YkXVIhBK6IIJlYHokmmLXeRr8xca-D8fpvIMSVNrH3tgVtOJYgBca15EwJoYSxlWS2rIFX1Jms9WmsNtQbaCzknpl2Ijq96fy1XoWdFphXsiyzwPtRIIabAVKvNz5ZaFvTQRgO7-aKESaFyOi7f9DH3Y3UymQDvnMh17UHUX3OSSUIp6XM1PwRKq8GNj7_MDif45OED5OEzPRw26_MkJJe_vj-H-zXKcuOrI0hpQjuvncE68N035nUh-nW43TntDcP-36fdDfO9A-GL_Sx</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Stejskal, Lenka</creator><creator>Lees, William D</creator><creator>Moss, David S</creator><creator>Palor, Machaela</creator><creator>Bingham, Richard J</creator><creator>Shepherd, Adrian J</creator><creator>Grove, Joe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3805-0364</orcidid><orcidid>https://orcid.org/0000-0003-0194-8613</orcidid><orcidid>https://orcid.org/0000-0002-4230-0963</orcidid><orcidid>https://orcid.org/0000-0003-4276-5346</orcidid><orcidid>https://orcid.org/0000-0001-5390-7579</orcidid></search><sort><creationdate>20200228</creationdate><title>Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein</title><author>Stejskal, Lenka ; Lees, William D ; Moss, David S ; Palor, Machaela ; Bingham, Richard J ; Shepherd, Adrian J ; Grove, Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-ae6d230f8011bb47caf8100f399362494e5ae4397d6699e39d5cd7833e489af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibodies</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibodies, Viral - immunology</topic><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Cell surface</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Divergence</topic><topic>Epitopes - immunology</topic><topic>Flexibility</topic><topic>Glycoprotein E2</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>HEK293 Cells</topic><topic>Hepatitis</topic><topic>Hepatitis C</topic><topic>Hepatitis C - virology</topic><topic>Hepatitis C virus</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Infections</topic><topic>Machinery</topic><topic>Medicine and health sciences</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Research and Analysis Methods</topic><topic>Scattering, Radiation</topic><topic>Small angle X ray scattering</topic><topic>Strains (organisms)</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Viral Envelope Proteins - chemistry</topic><topic>Virus Internalization</topic><topic>Viruses</topic><topic>X-ray scattering</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stejskal, Lenka</creatorcontrib><creatorcontrib>Lees, William D</creatorcontrib><creatorcontrib>Moss, David S</creatorcontrib><creatorcontrib>Palor, Machaela</creatorcontrib><creatorcontrib>Bingham, Richard J</creatorcontrib><creatorcontrib>Shepherd, Adrian J</creatorcontrib><creatorcontrib>Grove, Joe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stejskal, Lenka</au><au>Lees, William D</au><au>Moss, David S</au><au>Palor, Machaela</au><au>Bingham, Richard J</au><au>Shepherd, Adrian J</au><au>Grove, Joe</au><au>Wei, Guanghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1007710</spage><epage>e1007710</epage><pages>e1007710-e1007710</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32109245</pmid><doi>10.1371/journal.pcbi.1007710</doi><orcidid>https://orcid.org/0000-0003-3805-0364</orcidid><orcidid>https://orcid.org/0000-0003-0194-8613</orcidid><orcidid>https://orcid.org/0000-0002-4230-0963</orcidid><orcidid>https://orcid.org/0000-0003-4276-5346</orcidid><orcidid>https://orcid.org/0000-0001-5390-7579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-02, Vol.16 (2), p.e1007710-e1007710
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2377705171
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antibodies
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
Antigens
Biology and Life Sciences
Cell surface
Computer applications
Computer Simulation
Correlation analysis
Divergence
Epitopes - immunology
Flexibility
Glycoprotein E2
Glycoproteins
Glycosylation
HEK293 Cells
Hepatitis
Hepatitis C
Hepatitis C - virology
Hepatitis C virus
Humans
Immunoglobulins
Infections
Machinery
Medicine and health sciences
Molecular biology
Molecular dynamics
Molecular Dynamics Simulation
Physical Sciences
Protein Binding
Protein Domains
Proteins
Receptors
Research and Analysis Methods
Scattering, Radiation
Small angle X ray scattering
Strains (organisms)
Vaccine development
Vaccines
Viral Envelope Proteins - chemistry
Virus Internalization
Viruses
X-ray scattering
X-Rays
title Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexibility%20and%20intrinsic%20disorder%20are%20conserved%20features%20of%20hepatitis%20C%20virus%20E2%20glycoprotein&rft.jtitle=PLoS%20computational%20biology&rft.au=Stejskal,%20Lenka&rft.date=2020-02-28&rft.volume=16&rft.issue=2&rft.spage=e1007710&rft.epage=e1007710&rft.pages=e1007710-e1007710&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007710&rft_dat=%3Cgale_plos_%3EA615716328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377705171&rft_id=info:pmid/32109245&rft_galeid=A615716328&rft_doaj_id=oai_doaj_org_article_a608e8700b86497797ac584c2be653fa&rfr_iscdi=true