From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy
We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modellin...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-02, Vol.16 (2), p.e1007322-e1007322 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007322 |
---|---|
container_issue | 2 |
container_start_page | e1007322 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Kennel, Pol Dichamp, Jules Barreau, Corinne Guissard, Christophe Teyssedre, Lise Rouquette, Jacques Colombelli, Julien Lorsignol, Anne Casteilla, Louis Plouraboué, Franck |
description | We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph. |
doi_str_mv | 10.1371/journal.pcbi.1007322 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716253</galeid><doaj_id>oai_doaj_org_article_69297d3e0d844c5299887ab0bff17379</doaj_id><sourcerecordid>A615716253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-84b481d2acadd1542ac30a81b31792dc8a902c941a38a7c6ade92924f192ce923</originalsourceid><addsrcrecordid>eNqVk81u1DAQxyMEoqXwBggscaGHLP6I45gD0qqidKUVSHycLcdxsl6ceGsnu_QFeG6c3bTqVr1w8nj8m__YM54keY3gDBGGPqzd4DtpZxtVmhmCkBGMnySniFKSMkKLp_fsk-RFCGsIo8nz58kJwZByiMhp8vfSuxbsVs7q1PlGdsC0sjFdA3oHTJcGY41yoLTOVaC2bgdaV2kbgY9gDjod94PtTRqUtDru-53zv4GMF7sJJoDaeeD11gTT7zVNCIMG9dCp3rgIjWTv2puXybNa2qBfTetZ8uvy88-Lq3T57cviYr5MVc5pnxZZmRWowlLJqkI0iwaBskAlQYzjShWSQ6x4hiQpJFO5rDTHHGc14lhFk5wlbw-6G-uCmEoYBCaMMUhhVkRicSAqJ9di42M5_I1w0oi9I9ZISN8bZbXIozariIZVkWWKYs6LgskSlnWNGGE8an2asg1lqyulu95LeyR6fNKZlWjcVjCYY7wXOD8IrB6EXc2XYvRBTEmRQbxFkX0_JfPuetChF60JSlsrO-2G8Y2U8jxHGY3ouwfo45WYqCa2VpiudvGOahQV8xxRhvKYPFKzR6ixQbqNP6fTtYn-o4Dzo4DI9PpP38ghBLH48f0_2K_HbHZglXcheF3fFQxBMU7M7SPFODFimpgY9uZ-j-6CbkeE_AN_bxGV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705048</pqid></control><display><type>article</type><title>From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kennel, Pol ; Dichamp, Jules ; Barreau, Corinne ; Guissard, Christophe ; Teyssedre, Lise ; Rouquette, Jacques ; Colombelli, Julien ; Lorsignol, Anne ; Casteilla, Louis ; Plouraboué, Franck</creator><contributor>McCulloch, Andrew D.</contributor><creatorcontrib>Kennel, Pol ; Dichamp, Jules ; Barreau, Corinne ; Guissard, Christophe ; Teyssedre, Lise ; Rouquette, Jacques ; Colombelli, Julien ; Lorsignol, Anne ; Casteilla, Louis ; Plouraboué, Franck ; McCulloch, Andrew D.</creatorcontrib><description>We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007322</identifier><identifier>PMID: 32059013</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Animals ; Biology and Life Sciences ; Blood ; Blood Circulation ; Blood flow ; Blood vessels ; Cluster analysis ; Clustering ; Community involvement ; Computer Simulation ; Digitization ; Ecology and Environmental Sciences ; Engineering Sciences ; Flow (Dynamics) ; Fluid mechanics ; Fluids mechanics ; Fluorescence ; Fluorescence microscopy ; Functional anatomy ; Functional morphology ; Image reconstruction ; Laser microscopy ; Male ; Mechanics ; Medicine and Health Sciences ; Mesoscale phenomena ; Metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy ; Modelling ; Models, Biological ; Multiscale analysis ; Network analysis ; Perfusion ; Research and Analysis Methods ; Software ; Structure-function relationships ; Time ; Tissue analysis ; Tissues ; Veins & arteries ; Workflow ; Workflow software</subject><ispartof>PLoS computational biology, 2020-02, Vol.16 (2), p.e1007322-e1007322</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Kennel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Kennel et al 2020 Kennel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-84b481d2acadd1542ac30a81b31792dc8a902c941a38a7c6ade92924f192ce923</citedby><cites>FETCH-LOGICAL-c695t-84b481d2acadd1542ac30a81b31792dc8a902c941a38a7c6ade92924f192ce923</cites><orcidid>0000-0003-0349-4221 ; 0000-0001-5325-3130 ; 0000-0001-9647-3248 ; 0000-0001-7662-1872 ; 0000-0002-2784-4276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062279/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062279/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32059013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02538402$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>McCulloch, Andrew D.</contributor><creatorcontrib>Kennel, Pol</creatorcontrib><creatorcontrib>Dichamp, Jules</creatorcontrib><creatorcontrib>Barreau, Corinne</creatorcontrib><creatorcontrib>Guissard, Christophe</creatorcontrib><creatorcontrib>Teyssedre, Lise</creatorcontrib><creatorcontrib>Rouquette, Jacques</creatorcontrib><creatorcontrib>Colombelli, Julien</creatorcontrib><creatorcontrib>Lorsignol, Anne</creatorcontrib><creatorcontrib>Casteilla, Louis</creatorcontrib><creatorcontrib>Plouraboué, Franck</creatorcontrib><title>From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph.</description><subject>Adipose tissue</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Blood Circulation</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Community involvement</subject><subject>Computer Simulation</subject><subject>Digitization</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering Sciences</subject><subject>Flow (Dynamics)</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Functional anatomy</subject><subject>Functional morphology</subject><subject>Image reconstruction</subject><subject>Laser microscopy</subject><subject>Male</subject><subject>Mechanics</subject><subject>Medicine and Health Sciences</subject><subject>Mesoscale phenomena</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Multiscale analysis</subject><subject>Network analysis</subject><subject>Perfusion</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Structure-function relationships</subject><subject>Time</subject><subject>Tissue analysis</subject><subject>Tissues</subject><subject>Veins & arteries</subject><subject>Workflow</subject><subject>Workflow software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAQxyMEoqXwBggscaGHLP6I45gD0qqidKUVSHycLcdxsl6ceGsnu_QFeG6c3bTqVr1w8nj8m__YM54keY3gDBGGPqzd4DtpZxtVmhmCkBGMnySniFKSMkKLp_fsk-RFCGsIo8nz58kJwZByiMhp8vfSuxbsVs7q1PlGdsC0sjFdA3oHTJcGY41yoLTOVaC2bgdaV2kbgY9gDjod94PtTRqUtDru-53zv4GMF7sJJoDaeeD11gTT7zVNCIMG9dCp3rgIjWTv2puXybNa2qBfTetZ8uvy88-Lq3T57cviYr5MVc5pnxZZmRWowlLJqkI0iwaBskAlQYzjShWSQ6x4hiQpJFO5rDTHHGc14lhFk5wlbw-6G-uCmEoYBCaMMUhhVkRicSAqJ9di42M5_I1w0oi9I9ZISN8bZbXIozariIZVkWWKYs6LgskSlnWNGGE8an2asg1lqyulu95LeyR6fNKZlWjcVjCYY7wXOD8IrB6EXc2XYvRBTEmRQbxFkX0_JfPuetChF60JSlsrO-2G8Y2U8jxHGY3ouwfo45WYqCa2VpiudvGOahQV8xxRhvKYPFKzR6ixQbqNP6fTtYn-o4Dzo4DI9PpP38ghBLH48f0_2K_HbHZglXcheF3fFQxBMU7M7SPFODFimpgY9uZ-j-6CbkeE_AN_bxGV</recordid><startdate>20200214</startdate><enddate>20200214</enddate><creator>Kennel, Pol</creator><creator>Dichamp, Jules</creator><creator>Barreau, Corinne</creator><creator>Guissard, Christophe</creator><creator>Teyssedre, Lise</creator><creator>Rouquette, Jacques</creator><creator>Colombelli, Julien</creator><creator>Lorsignol, Anne</creator><creator>Casteilla, Louis</creator><creator>Plouraboué, Franck</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0349-4221</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0001-9647-3248</orcidid><orcidid>https://orcid.org/0000-0001-7662-1872</orcidid><orcidid>https://orcid.org/0000-0002-2784-4276</orcidid></search><sort><creationdate>20200214</creationdate><title>From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy</title><author>Kennel, Pol ; Dichamp, Jules ; Barreau, Corinne ; Guissard, Christophe ; Teyssedre, Lise ; Rouquette, Jacques ; Colombelli, Julien ; Lorsignol, Anne ; Casteilla, Louis ; Plouraboué, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-84b481d2acadd1542ac30a81b31792dc8a902c941a38a7c6ade92924f192ce923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Blood Circulation</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Community involvement</topic><topic>Computer Simulation</topic><topic>Digitization</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering Sciences</topic><topic>Flow (Dynamics)</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Functional anatomy</topic><topic>Functional morphology</topic><topic>Image reconstruction</topic><topic>Laser microscopy</topic><topic>Male</topic><topic>Mechanics</topic><topic>Medicine and Health Sciences</topic><topic>Mesoscale phenomena</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Multiscale analysis</topic><topic>Network analysis</topic><topic>Perfusion</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Structure-function relationships</topic><topic>Time</topic><topic>Tissue analysis</topic><topic>Tissues</topic><topic>Veins & arteries</topic><topic>Workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennel, Pol</creatorcontrib><creatorcontrib>Dichamp, Jules</creatorcontrib><creatorcontrib>Barreau, Corinne</creatorcontrib><creatorcontrib>Guissard, Christophe</creatorcontrib><creatorcontrib>Teyssedre, Lise</creatorcontrib><creatorcontrib>Rouquette, Jacques</creatorcontrib><creatorcontrib>Colombelli, Julien</creatorcontrib><creatorcontrib>Lorsignol, Anne</creatorcontrib><creatorcontrib>Casteilla, Louis</creatorcontrib><creatorcontrib>Plouraboué, Franck</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennel, Pol</au><au>Dichamp, Jules</au><au>Barreau, Corinne</au><au>Guissard, Christophe</au><au>Teyssedre, Lise</au><au>Rouquette, Jacques</au><au>Colombelli, Julien</au><au>Lorsignol, Anne</au><au>Casteilla, Louis</au><au>Plouraboué, Franck</au><au>McCulloch, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-02-14</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1007322</spage><epage>e1007322</epage><pages>e1007322-e1007322</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32059013</pmid><doi>10.1371/journal.pcbi.1007322</doi><orcidid>https://orcid.org/0000-0003-0349-4221</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0001-9647-3248</orcidid><orcidid>https://orcid.org/0000-0001-7662-1872</orcidid><orcidid>https://orcid.org/0000-0002-2784-4276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-02, Vol.16 (2), p.e1007322-e1007322 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2377705048 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adipose tissue Animals Biology and Life Sciences Blood Blood Circulation Blood flow Blood vessels Cluster analysis Clustering Community involvement Computer Simulation Digitization Ecology and Environmental Sciences Engineering Sciences Flow (Dynamics) Fluid mechanics Fluids mechanics Fluorescence Fluorescence microscopy Functional anatomy Functional morphology Image reconstruction Laser microscopy Male Mechanics Medicine and Health Sciences Mesoscale phenomena Metabolism Mice Mice, Inbred C57BL Microscopy Modelling Models, Biological Multiscale analysis Network analysis Perfusion Research and Analysis Methods Software Structure-function relationships Time Tissue analysis Tissues Veins & arteries Workflow Workflow software |
title | From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20whole-organ%20imaging%20to%20in-silico%20blood%20flow%20modeling:%20A%20new%20multi-scale%20network%20analysis%20for%20revisiting%20tissue%20functional%20anatomy&rft.jtitle=PLoS%20computational%20biology&rft.au=Kennel,%20Pol&rft.date=2020-02-14&rft.volume=16&rft.issue=2&rft.spage=e1007322&rft.epage=e1007322&rft.pages=e1007322-e1007322&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007322&rft_dat=%3Cgale_plos_%3EA615716253%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377705048&rft_id=info:pmid/32059013&rft_galeid=A615716253&rft_doaj_id=oai_doaj_org_article_69297d3e0d844c5299887ab0bff17379&rfr_iscdi=true |