Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristic...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-02, Vol.16 (2), p.e1008083 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e1008083 |
container_title | PLoS pathogens |
container_volume | 16 |
creator | Chu, Thach H Crowley, Andrew R Backes, Iara Chang, Cheryl Tay, Matthew Broge, Thomas Tuyishime, Marina Ferrari, Guido Seaman, Michael S Richardson, Simone I Tomaras, Georgia D Alter, Galit Leib, David Ackerman, Margaret E |
description | Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges. |
doi_str_mv | 10.1371/journal.ppat.1008083 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716336</galeid><doaj_id>oai_doaj_org_article_0ca56f088f3c4dc9976f7078e7e79cf1</doaj_id><sourcerecordid>A615716336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</originalsourceid><addsrcrecordid>eNqVUk1r3DAQNaWlSbb9B6U19NIevJUsW7IvhRDarCG00K9TQUjyyKvFa7mWHLr_PnLWCXHJpQihQXrzZt7oRdErjNaYMPxhZ8ehE-2674VfY4QKVJAn0SnOc5IwwrKnD-KT6My5HUIZJpg-j05IisoUp-lp9HtjugbiFrrGb2NlOz8YOXpwsbex30Lcb0Vj1cEbFQvlzbXxh9jqeFP9SlwPyujwUDWXOBZdPQUkBN5IWxtwL6JnWrQOXs7nKvr5-dOPi01y9fWyuji_ShSl2CdSYwIilxTjshS0ZiUpRYYVpIWQmuYSFzRDkGVKlowiXEspmIJCSw1SEyCr6M2Rt2-t4_NgHE8JYwzliLCAqI6I2ood7wezF8OBW2H47YUdGi6GoLEFjpTIqUZFoYnKalWGkpohVgADVqrQ6ir6OFcb5R5qBWFmol2QLl86s-WNveahl4JkZSB4NxMM9s8IzvO9cQraVnRgx6nvIDfs277f_gN9XN2MakQQYDptQ101kfJzinOGKSE0oNaPoMKqYW_Cz4M24X6R8H6RMLkD_vpGjM7x6vu3_8B-WWKzI1YN1rkB9P3sMOKTt-9E8snbfPZ2SHv9cO73SXdmJjdzjvR6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705037</pqid></control><display><type>article</type><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E</creator><contributor>Doores, Katie J.</contributor><creatorcontrib>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E ; Doores, Katie J.</creatorcontrib><description>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008083</identifier><identifier>PMID: 32092122</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Amino acids ; Antibodies ; Antibodies, Neutralizing - genetics ; Antibodies, Neutralizing - immunology ; Antibody-Dependent Cell Cytotoxicity ; Antigenic determinants ; Antigens ; Binding sites ; Biocompatibility ; Biology and Life Sciences ; CD4 antigen ; Chemical bonds ; Cytotoxicity ; Domains ; Engineering schools ; Epitopes ; Fab ; Funding ; Glycosylation ; HEK293 Cells ; Hinge Exons ; HIV ; HIV Antibodies - genetics ; HIV Antibodies - immunology ; HIV-1 - immunology ; Human immunodeficiency virus ; Humans ; Immunoglobulin G ; Immunoglobulin G - genetics ; Immunoglobulin G - immunology ; Immunoglobulins ; In vivo methods and tests ; Medicine ; Medicine and Health Sciences ; Neutralization ; Pathogens ; Phagocytes ; Phagocytosis ; Phagocytosis - immunology ; Pharmacokinetics ; Receptors ; Research and Analysis Methods ; Supervision ; Toxicity ; Vaccines</subject><ispartof>PLoS pathogens, 2020-02, Vol.16 (2), p.e1008083</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Chu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Chu et al 2020 Chu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</citedby><cites>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</cites><orcidid>0000-0001-6444-3562 ; 0000-0002-1763-913X ; 0000-0002-5011-5362 ; 0000-0003-4306-2888 ; 0000-0001-7810-0501 ; 0000-0001-7678-2609 ; 0000-0002-4253-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79357,79358</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32092122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Doores, Katie J.</contributor><creatorcontrib>Chu, Thach H</creatorcontrib><creatorcontrib>Crowley, Andrew R</creatorcontrib><creatorcontrib>Backes, Iara</creatorcontrib><creatorcontrib>Chang, Cheryl</creatorcontrib><creatorcontrib>Tay, Matthew</creatorcontrib><creatorcontrib>Broge, Thomas</creatorcontrib><creatorcontrib>Tuyishime, Marina</creatorcontrib><creatorcontrib>Ferrari, Guido</creatorcontrib><creatorcontrib>Seaman, Michael S</creatorcontrib><creatorcontrib>Richardson, Simone I</creatorcontrib><creatorcontrib>Tomaras, Georgia D</creatorcontrib><creatorcontrib>Alter, Galit</creatorcontrib><creatorcontrib>Leib, David</creatorcontrib><creatorcontrib>Ackerman, Margaret E</creatorcontrib><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</description><subject>Affinity</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing - genetics</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibody-Dependent Cell Cytotoxicity</subject><subject>Antigenic determinants</subject><subject>Antigens</subject><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>CD4 antigen</subject><subject>Chemical bonds</subject><subject>Cytotoxicity</subject><subject>Domains</subject><subject>Engineering schools</subject><subject>Epitopes</subject><subject>Fab</subject><subject>Funding</subject><subject>Glycosylation</subject><subject>HEK293 Cells</subject><subject>Hinge Exons</subject><subject>HIV</subject><subject>HIV Antibodies - genetics</subject><subject>HIV Antibodies - immunology</subject><subject>HIV-1 - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - genetics</subject><subject>Immunoglobulin G - immunology</subject><subject>Immunoglobulins</subject><subject>In vivo methods and tests</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neutralization</subject><subject>Pathogens</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Phagocytosis - immunology</subject><subject>Pharmacokinetics</subject><subject>Receptors</subject><subject>Research and Analysis Methods</subject><subject>Supervision</subject><subject>Toxicity</subject><subject>Vaccines</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1r3DAQNaWlSbb9B6U19NIevJUsW7IvhRDarCG00K9TQUjyyKvFa7mWHLr_PnLWCXHJpQihQXrzZt7oRdErjNaYMPxhZ8ehE-2674VfY4QKVJAn0SnOc5IwwrKnD-KT6My5HUIZJpg-j05IisoUp-lp9HtjugbiFrrGb2NlOz8YOXpwsbex30Lcb0Vj1cEbFQvlzbXxh9jqeFP9SlwPyujwUDWXOBZdPQUkBN5IWxtwL6JnWrQOXs7nKvr5-dOPi01y9fWyuji_ShSl2CdSYwIilxTjshS0ZiUpRYYVpIWQmuYSFzRDkGVKlowiXEspmIJCSw1SEyCr6M2Rt2-t4_NgHE8JYwzliLCAqI6I2ood7wezF8OBW2H47YUdGi6GoLEFjpTIqUZFoYnKalWGkpohVgADVqrQ6ir6OFcb5R5qBWFmol2QLl86s-WNveahl4JkZSB4NxMM9s8IzvO9cQraVnRgx6nvIDfs277f_gN9XN2MakQQYDptQ101kfJzinOGKSE0oNaPoMKqYW_Cz4M24X6R8H6RMLkD_vpGjM7x6vu3_8B-WWKzI1YN1rkB9P3sMOKTt-9E8snbfPZ2SHv9cO73SXdmJjdzjvR6</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Chu, Thach H</creator><creator>Crowley, Andrew R</creator><creator>Backes, Iara</creator><creator>Chang, Cheryl</creator><creator>Tay, Matthew</creator><creator>Broge, Thomas</creator><creator>Tuyishime, Marina</creator><creator>Ferrari, Guido</creator><creator>Seaman, Michael S</creator><creator>Richardson, Simone I</creator><creator>Tomaras, Georgia D</creator><creator>Alter, Galit</creator><creator>Leib, David</creator><creator>Ackerman, Margaret E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6444-3562</orcidid><orcidid>https://orcid.org/0000-0002-1763-913X</orcidid><orcidid>https://orcid.org/0000-0002-5011-5362</orcidid><orcidid>https://orcid.org/0000-0003-4306-2888</orcidid><orcidid>https://orcid.org/0000-0001-7810-0501</orcidid><orcidid>https://orcid.org/0000-0001-7678-2609</orcidid><orcidid>https://orcid.org/0000-0002-4253-3476</orcidid></search><sort><creationdate>20200224</creationdate><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><author>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing - genetics</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibody-Dependent Cell Cytotoxicity</topic><topic>Antigenic determinants</topic><topic>Antigens</topic><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>CD4 antigen</topic><topic>Chemical bonds</topic><topic>Cytotoxicity</topic><topic>Domains</topic><topic>Engineering schools</topic><topic>Epitopes</topic><topic>Fab</topic><topic>Funding</topic><topic>Glycosylation</topic><topic>HEK293 Cells</topic><topic>Hinge Exons</topic><topic>HIV</topic><topic>HIV Antibodies - genetics</topic><topic>HIV Antibodies - immunology</topic><topic>HIV-1 - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - genetics</topic><topic>Immunoglobulin G - immunology</topic><topic>Immunoglobulins</topic><topic>In vivo methods and tests</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neutralization</topic><topic>Pathogens</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Phagocytosis - immunology</topic><topic>Pharmacokinetics</topic><topic>Receptors</topic><topic>Research and Analysis Methods</topic><topic>Supervision</topic><topic>Toxicity</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Thach H</creatorcontrib><creatorcontrib>Crowley, Andrew R</creatorcontrib><creatorcontrib>Backes, Iara</creatorcontrib><creatorcontrib>Chang, Cheryl</creatorcontrib><creatorcontrib>Tay, Matthew</creatorcontrib><creatorcontrib>Broge, Thomas</creatorcontrib><creatorcontrib>Tuyishime, Marina</creatorcontrib><creatorcontrib>Ferrari, Guido</creatorcontrib><creatorcontrib>Seaman, Michael S</creatorcontrib><creatorcontrib>Richardson, Simone I</creatorcontrib><creatorcontrib>Tomaras, Georgia D</creatorcontrib><creatorcontrib>Alter, Galit</creatorcontrib><creatorcontrib>Leib, David</creatorcontrib><creatorcontrib>Ackerman, Margaret E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Thach H</au><au>Crowley, Andrew R</au><au>Backes, Iara</au><au>Chang, Cheryl</au><au>Tay, Matthew</au><au>Broge, Thomas</au><au>Tuyishime, Marina</au><au>Ferrari, Guido</au><au>Seaman, Michael S</au><au>Richardson, Simone I</au><au>Tomaras, Georgia D</au><au>Alter, Galit</au><au>Leib, David</au><au>Ackerman, Margaret E</au><au>Doores, Katie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-02-24</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1008083</spage><pages>e1008083-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32092122</pmid><doi>10.1371/journal.ppat.1008083</doi><orcidid>https://orcid.org/0000-0001-6444-3562</orcidid><orcidid>https://orcid.org/0000-0002-1763-913X</orcidid><orcidid>https://orcid.org/0000-0002-5011-5362</orcidid><orcidid>https://orcid.org/0000-0003-4306-2888</orcidid><orcidid>https://orcid.org/0000-0001-7810-0501</orcidid><orcidid>https://orcid.org/0000-0001-7678-2609</orcidid><orcidid>https://orcid.org/0000-0002-4253-3476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2020-02, Vol.16 (2), p.e1008083 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2377705037 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central |
subjects | Affinity Amino acids Antibodies Antibodies, Neutralizing - genetics Antibodies, Neutralizing - immunology Antibody-Dependent Cell Cytotoxicity Antigenic determinants Antigens Binding sites Biocompatibility Biology and Life Sciences CD4 antigen Chemical bonds Cytotoxicity Domains Engineering schools Epitopes Fab Funding Glycosylation HEK293 Cells Hinge Exons HIV HIV Antibodies - genetics HIV Antibodies - immunology HIV-1 - immunology Human immunodeficiency virus Humans Immunoglobulin G Immunoglobulin G - genetics Immunoglobulin G - immunology Immunoglobulins In vivo methods and tests Medicine Medicine and Health Sciences Neutralization Pathogens Phagocytes Phagocytosis Phagocytosis - immunology Pharmacokinetics Receptors Research and Analysis Methods Supervision Toxicity Vaccines |
title | Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hinge%20length%20contributes%20to%20the%20phagocytic%20activity%20of%20HIV-specific%20IgG1%20and%20IgG3%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Chu,%20Thach%20H&rft.date=2020-02-24&rft.volume=16&rft.issue=2&rft.spage=e1008083&rft.pages=e1008083-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008083&rft_dat=%3Cgale_plos_%3EA615716336%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377705037&rft_id=info:pmid/32092122&rft_galeid=A615716336&rft_doaj_id=oai_doaj_org_article_0ca56f088f3c4dc9976f7078e7e79cf1&rfr_iscdi=true |