Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies

Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2020-02, Vol.16 (2), p.e1008083
Hauptverfasser: Chu, Thach H, Crowley, Andrew R, Backes, Iara, Chang, Cheryl, Tay, Matthew, Broge, Thomas, Tuyishime, Marina, Ferrari, Guido, Seaman, Michael S, Richardson, Simone I, Tomaras, Georgia D, Alter, Galit, Leib, David, Ackerman, Margaret E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e1008083
container_title PLoS pathogens
container_volume 16
creator Chu, Thach H
Crowley, Andrew R
Backes, Iara
Chang, Cheryl
Tay, Matthew
Broge, Thomas
Tuyishime, Marina
Ferrari, Guido
Seaman, Michael S
Richardson, Simone I
Tomaras, Georgia D
Alter, Galit
Leib, David
Ackerman, Margaret E
description Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
doi_str_mv 10.1371/journal.ppat.1008083
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2377705037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615716336</galeid><doaj_id>oai_doaj_org_article_0ca56f088f3c4dc9976f7078e7e79cf1</doaj_id><sourcerecordid>A615716336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</originalsourceid><addsrcrecordid>eNqVUk1r3DAQNaWlSbb9B6U19NIevJUsW7IvhRDarCG00K9TQUjyyKvFa7mWHLr_PnLWCXHJpQihQXrzZt7oRdErjNaYMPxhZ8ehE-2674VfY4QKVJAn0SnOc5IwwrKnD-KT6My5HUIZJpg-j05IisoUp-lp9HtjugbiFrrGb2NlOz8YOXpwsbex30Lcb0Vj1cEbFQvlzbXxh9jqeFP9SlwPyujwUDWXOBZdPQUkBN5IWxtwL6JnWrQOXs7nKvr5-dOPi01y9fWyuji_ShSl2CdSYwIilxTjshS0ZiUpRYYVpIWQmuYSFzRDkGVKlowiXEspmIJCSw1SEyCr6M2Rt2-t4_NgHE8JYwzliLCAqI6I2ood7wezF8OBW2H47YUdGi6GoLEFjpTIqUZFoYnKalWGkpohVgADVqrQ6ir6OFcb5R5qBWFmol2QLl86s-WNveahl4JkZSB4NxMM9s8IzvO9cQraVnRgx6nvIDfs277f_gN9XN2MakQQYDptQ101kfJzinOGKSE0oNaPoMKqYW_Cz4M24X6R8H6RMLkD_vpGjM7x6vu3_8B-WWKzI1YN1rkB9P3sMOKTt-9E8snbfPZ2SHv9cO73SXdmJjdzjvR6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377705037</pqid></control><display><type>article</type><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E</creator><contributor>Doores, Katie J.</contributor><creatorcontrib>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E ; Doores, Katie J.</creatorcontrib><description>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008083</identifier><identifier>PMID: 32092122</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Amino acids ; Antibodies ; Antibodies, Neutralizing - genetics ; Antibodies, Neutralizing - immunology ; Antibody-Dependent Cell Cytotoxicity ; Antigenic determinants ; Antigens ; Binding sites ; Biocompatibility ; Biology and Life Sciences ; CD4 antigen ; Chemical bonds ; Cytotoxicity ; Domains ; Engineering schools ; Epitopes ; Fab ; Funding ; Glycosylation ; HEK293 Cells ; Hinge Exons ; HIV ; HIV Antibodies - genetics ; HIV Antibodies - immunology ; HIV-1 - immunology ; Human immunodeficiency virus ; Humans ; Immunoglobulin G ; Immunoglobulin G - genetics ; Immunoglobulin G - immunology ; Immunoglobulins ; In vivo methods and tests ; Medicine ; Medicine and Health Sciences ; Neutralization ; Pathogens ; Phagocytes ; Phagocytosis ; Phagocytosis - immunology ; Pharmacokinetics ; Receptors ; Research and Analysis Methods ; Supervision ; Toxicity ; Vaccines</subject><ispartof>PLoS pathogens, 2020-02, Vol.16 (2), p.e1008083</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Chu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Chu et al 2020 Chu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</citedby><cites>FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</cites><orcidid>0000-0001-6444-3562 ; 0000-0002-1763-913X ; 0000-0002-5011-5362 ; 0000-0003-4306-2888 ; 0000-0001-7810-0501 ; 0000-0001-7678-2609 ; 0000-0002-4253-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79357,79358</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32092122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Doores, Katie J.</contributor><creatorcontrib>Chu, Thach H</creatorcontrib><creatorcontrib>Crowley, Andrew R</creatorcontrib><creatorcontrib>Backes, Iara</creatorcontrib><creatorcontrib>Chang, Cheryl</creatorcontrib><creatorcontrib>Tay, Matthew</creatorcontrib><creatorcontrib>Broge, Thomas</creatorcontrib><creatorcontrib>Tuyishime, Marina</creatorcontrib><creatorcontrib>Ferrari, Guido</creatorcontrib><creatorcontrib>Seaman, Michael S</creatorcontrib><creatorcontrib>Richardson, Simone I</creatorcontrib><creatorcontrib>Tomaras, Georgia D</creatorcontrib><creatorcontrib>Alter, Galit</creatorcontrib><creatorcontrib>Leib, David</creatorcontrib><creatorcontrib>Ackerman, Margaret E</creatorcontrib><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</description><subject>Affinity</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing - genetics</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibody-Dependent Cell Cytotoxicity</subject><subject>Antigenic determinants</subject><subject>Antigens</subject><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>CD4 antigen</subject><subject>Chemical bonds</subject><subject>Cytotoxicity</subject><subject>Domains</subject><subject>Engineering schools</subject><subject>Epitopes</subject><subject>Fab</subject><subject>Funding</subject><subject>Glycosylation</subject><subject>HEK293 Cells</subject><subject>Hinge Exons</subject><subject>HIV</subject><subject>HIV Antibodies - genetics</subject><subject>HIV Antibodies - immunology</subject><subject>HIV-1 - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - genetics</subject><subject>Immunoglobulin G - immunology</subject><subject>Immunoglobulins</subject><subject>In vivo methods and tests</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neutralization</subject><subject>Pathogens</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Phagocytosis - immunology</subject><subject>Pharmacokinetics</subject><subject>Receptors</subject><subject>Research and Analysis Methods</subject><subject>Supervision</subject><subject>Toxicity</subject><subject>Vaccines</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1r3DAQNaWlSbb9B6U19NIevJUsW7IvhRDarCG00K9TQUjyyKvFa7mWHLr_PnLWCXHJpQihQXrzZt7oRdErjNaYMPxhZ8ehE-2674VfY4QKVJAn0SnOc5IwwrKnD-KT6My5HUIZJpg-j05IisoUp-lp9HtjugbiFrrGb2NlOz8YOXpwsbex30Lcb0Vj1cEbFQvlzbXxh9jqeFP9SlwPyujwUDWXOBZdPQUkBN5IWxtwL6JnWrQOXs7nKvr5-dOPi01y9fWyuji_ShSl2CdSYwIilxTjshS0ZiUpRYYVpIWQmuYSFzRDkGVKlowiXEspmIJCSw1SEyCr6M2Rt2-t4_NgHE8JYwzliLCAqI6I2ood7wezF8OBW2H47YUdGi6GoLEFjpTIqUZFoYnKalWGkpohVgADVqrQ6ir6OFcb5R5qBWFmol2QLl86s-WNveahl4JkZSB4NxMM9s8IzvO9cQraVnRgx6nvIDfs277f_gN9XN2MakQQYDptQ101kfJzinOGKSE0oNaPoMKqYW_Cz4M24X6R8H6RMLkD_vpGjM7x6vu3_8B-WWKzI1YN1rkB9P3sMOKTt-9E8snbfPZ2SHv9cO73SXdmJjdzjvR6</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Chu, Thach H</creator><creator>Crowley, Andrew R</creator><creator>Backes, Iara</creator><creator>Chang, Cheryl</creator><creator>Tay, Matthew</creator><creator>Broge, Thomas</creator><creator>Tuyishime, Marina</creator><creator>Ferrari, Guido</creator><creator>Seaman, Michael S</creator><creator>Richardson, Simone I</creator><creator>Tomaras, Georgia D</creator><creator>Alter, Galit</creator><creator>Leib, David</creator><creator>Ackerman, Margaret E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6444-3562</orcidid><orcidid>https://orcid.org/0000-0002-1763-913X</orcidid><orcidid>https://orcid.org/0000-0002-5011-5362</orcidid><orcidid>https://orcid.org/0000-0003-4306-2888</orcidid><orcidid>https://orcid.org/0000-0001-7810-0501</orcidid><orcidid>https://orcid.org/0000-0001-7678-2609</orcidid><orcidid>https://orcid.org/0000-0002-4253-3476</orcidid></search><sort><creationdate>20200224</creationdate><title>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</title><author>Chu, Thach H ; Crowley, Andrew R ; Backes, Iara ; Chang, Cheryl ; Tay, Matthew ; Broge, Thomas ; Tuyishime, Marina ; Ferrari, Guido ; Seaman, Michael S ; Richardson, Simone I ; Tomaras, Georgia D ; Alter, Galit ; Leib, David ; Ackerman, Margaret E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-bf13ea5b61199a6d7939a41ce28abf65b18640e44cb97601dbba7ce8fbfebf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing - genetics</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibody-Dependent Cell Cytotoxicity</topic><topic>Antigenic determinants</topic><topic>Antigens</topic><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>CD4 antigen</topic><topic>Chemical bonds</topic><topic>Cytotoxicity</topic><topic>Domains</topic><topic>Engineering schools</topic><topic>Epitopes</topic><topic>Fab</topic><topic>Funding</topic><topic>Glycosylation</topic><topic>HEK293 Cells</topic><topic>Hinge Exons</topic><topic>HIV</topic><topic>HIV Antibodies - genetics</topic><topic>HIV Antibodies - immunology</topic><topic>HIV-1 - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - genetics</topic><topic>Immunoglobulin G - immunology</topic><topic>Immunoglobulins</topic><topic>In vivo methods and tests</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neutralization</topic><topic>Pathogens</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Phagocytosis - immunology</topic><topic>Pharmacokinetics</topic><topic>Receptors</topic><topic>Research and Analysis Methods</topic><topic>Supervision</topic><topic>Toxicity</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Thach H</creatorcontrib><creatorcontrib>Crowley, Andrew R</creatorcontrib><creatorcontrib>Backes, Iara</creatorcontrib><creatorcontrib>Chang, Cheryl</creatorcontrib><creatorcontrib>Tay, Matthew</creatorcontrib><creatorcontrib>Broge, Thomas</creatorcontrib><creatorcontrib>Tuyishime, Marina</creatorcontrib><creatorcontrib>Ferrari, Guido</creatorcontrib><creatorcontrib>Seaman, Michael S</creatorcontrib><creatorcontrib>Richardson, Simone I</creatorcontrib><creatorcontrib>Tomaras, Georgia D</creatorcontrib><creatorcontrib>Alter, Galit</creatorcontrib><creatorcontrib>Leib, David</creatorcontrib><creatorcontrib>Ackerman, Margaret E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Thach H</au><au>Crowley, Andrew R</au><au>Backes, Iara</au><au>Chang, Cheryl</au><au>Tay, Matthew</au><au>Broge, Thomas</au><au>Tuyishime, Marina</au><au>Ferrari, Guido</au><au>Seaman, Michael S</au><au>Richardson, Simone I</au><au>Tomaras, Georgia D</au><au>Alter, Galit</au><au>Leib, David</au><au>Ackerman, Margaret E</au><au>Doores, Katie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2020-02-24</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>e1008083</spage><pages>e1008083-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32092122</pmid><doi>10.1371/journal.ppat.1008083</doi><orcidid>https://orcid.org/0000-0001-6444-3562</orcidid><orcidid>https://orcid.org/0000-0002-1763-913X</orcidid><orcidid>https://orcid.org/0000-0002-5011-5362</orcidid><orcidid>https://orcid.org/0000-0003-4306-2888</orcidid><orcidid>https://orcid.org/0000-0001-7810-0501</orcidid><orcidid>https://orcid.org/0000-0001-7678-2609</orcidid><orcidid>https://orcid.org/0000-0002-4253-3476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2020-02, Vol.16 (2), p.e1008083
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2377705037
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central
subjects Affinity
Amino acids
Antibodies
Antibodies, Neutralizing - genetics
Antibodies, Neutralizing - immunology
Antibody-Dependent Cell Cytotoxicity
Antigenic determinants
Antigens
Binding sites
Biocompatibility
Biology and Life Sciences
CD4 antigen
Chemical bonds
Cytotoxicity
Domains
Engineering schools
Epitopes
Fab
Funding
Glycosylation
HEK293 Cells
Hinge Exons
HIV
HIV Antibodies - genetics
HIV Antibodies - immunology
HIV-1 - immunology
Human immunodeficiency virus
Humans
Immunoglobulin G
Immunoglobulin G - genetics
Immunoglobulin G - immunology
Immunoglobulins
In vivo methods and tests
Medicine
Medicine and Health Sciences
Neutralization
Pathogens
Phagocytes
Phagocytosis
Phagocytosis - immunology
Pharmacokinetics
Receptors
Research and Analysis Methods
Supervision
Toxicity
Vaccines
title Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hinge%20length%20contributes%20to%20the%20phagocytic%20activity%20of%20HIV-specific%20IgG1%20and%20IgG3%20antibodies&rft.jtitle=PLoS%20pathogens&rft.au=Chu,%20Thach%20H&rft.date=2020-02-24&rft.volume=16&rft.issue=2&rft.spage=e1008083&rft.pages=e1008083-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008083&rft_dat=%3Cgale_plos_%3EA615716336%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377705037&rft_id=info:pmid/32092122&rft_galeid=A615716336&rft_doaj_id=oai_doaj_org_article_0ca56f088f3c4dc9976f7078e7e79cf1&rfr_iscdi=true