A population model for the 2017/18 listeriosis outbreak in South Africa
We introduce a compartmental model of ordinary differential equations for the population dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The model explicitly accommodates neonatal infections. Similarly as is common in cholera modeling, we include a compartment to...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-03, Vol.15 (3), p.e0229901-e0229901 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0229901 |
---|---|
container_issue | 3 |
container_start_page | e0229901 |
container_title | PloS one |
container_volume | 15 |
creator | Witbooi, Peter Joseph Africa, Charlene Christoffels, Alan Ahmed, Ibrahim Hussin Ibrahim |
description | We introduce a compartmental model of ordinary differential equations for the population dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The model explicitly accommodates neonatal infections. Similarly as is common in cholera modeling, we include a compartment to represent the reservoir of bacteria. We also include a compartment to represent the incubation phase. For the 2017/18 listeriosis outbreak that happened in South Africa, we calculate the time pattern and intensity of the force of infection, and we determine numerical values for some of the parameters in the model. The model is calibrated using South African data, together with existing data in the open literature not necessarily from South Africa. We make projections on the future outlook of the epidemiology of the disease and the possibility of eradication. |
doi_str_mv | 10.1371/journal.pone.0229901 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2376717302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617251583</galeid><doaj_id>oai_doaj_org_article_bdd6e4f491ab4828a07da7fd4310d83a</doaj_id><sourcerecordid>A617251583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f0842bc7fa20d33b7b8082491f593092f115ea95cb62ce4e136e94d5670ce5dd3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbF39B6IDgujFbvMxk8zcCEvRulAoWPU2ZJKT3dTsZE0yov_ebHdadqQXkot8Pec9OSdvUbzEaIEpx2c3fgi9dIud72GBCGlbhB8Vp7ilZM4Ioo-P1ifFsxhvEKppw9jT4oQSzGhFm9PiYlnu_G5wMlnfl1uvwZXGhzJtoCQI8zPclM7GBMH6aGPph9QFkD9K25fXebMplyZYJZ8XT4x0EV6M86z49unj1_PP88uri9X58nKuWEvS3KCmIp3iRhKkKe1416CGVC02dUtRSwzGNci2Vh0jCirAlEFb6ZpxpKDWms6K1wfdnfNRjD2IglDOOOYUkUysDoT28kbsgt3K8Ed4acXtgQ9rIUOyyoHotGZQmZxedlVDGom4ltzoimKkGyqz1ocx29BtQSvoU5BuIjq96e1GrP0vwRHjdS5pVrwbBYL_OUBMYmujAudkD364fTenFWvw_t1v_kEfrm6k1jIXYHvjc161FxVLhjmpcd3QTC0eoPLQsLUqG8bYfD4JeD8JyEyC32kthxjF6vrL_7NX36fs2yN2A9KlTfRu2LstTsHqAKrgYwxg7puMkdj7_a4bYu93Mfo9h706_qD7oDuD07_H1vgR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376717302</pqid></control><display><type>article</type><title>A population model for the 2017/18 listeriosis outbreak in South Africa</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Witbooi, Peter Joseph ; Africa, Charlene ; Christoffels, Alan ; Ahmed, Ibrahim Hussin Ibrahim</creator><contributor>Barbarossa, Maria Vittoria</contributor><creatorcontrib>Witbooi, Peter Joseph ; Africa, Charlene ; Christoffels, Alan ; Ahmed, Ibrahim Hussin Ibrahim ; Barbarossa, Maria Vittoria</creatorcontrib><description>We introduce a compartmental model of ordinary differential equations for the population dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The model explicitly accommodates neonatal infections. Similarly as is common in cholera modeling, we include a compartment to represent the reservoir of bacteria. We also include a compartment to represent the incubation phase. For the 2017/18 listeriosis outbreak that happened in South Africa, we calculate the time pattern and intensity of the force of infection, and we determine numerical values for some of the parameters in the model. The model is calibrated using South African data, together with existing data in the open literature not necessarily from South Africa. We make projections on the future outlook of the epidemiology of the disease and the possibility of eradication.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0229901</identifier><identifier>PMID: 32163438</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Applied mathematics ; Bacteria ; Bioinformatics ; Biology and Life Sciences ; Cholera ; Differential equations ; Disease ; Diseases ; Epidemics ; Epidemiology ; Food contamination & poisoning ; Infection ; Infections ; Listeria ; Listeriosis ; Medicine and Health Sciences ; Meningitis ; Mortality ; Mothers ; Neonates ; Newborn babies ; Newborn infants ; Ordinary differential equations ; Outbreaks ; Pathogens ; People and places ; Physical Sciences ; Population ; Population biology ; Population dynamics ; Pregnancy ; Reservoirs (Water) ; Sepsis ; Time ; Waterborne diseases</subject><ispartof>PloS one, 2020-03, Vol.15 (3), p.e0229901-e0229901</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Witbooi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Witbooi et al 2020 Witbooi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f0842bc7fa20d33b7b8082491f593092f115ea95cb62ce4e136e94d5670ce5dd3</citedby><cites>FETCH-LOGICAL-c692t-f0842bc7fa20d33b7b8082491f593092f115ea95cb62ce4e136e94d5670ce5dd3</cites><orcidid>0000-0003-1304-0282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067559/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067559/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32163438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Barbarossa, Maria Vittoria</contributor><creatorcontrib>Witbooi, Peter Joseph</creatorcontrib><creatorcontrib>Africa, Charlene</creatorcontrib><creatorcontrib>Christoffels, Alan</creatorcontrib><creatorcontrib>Ahmed, Ibrahim Hussin Ibrahim</creatorcontrib><title>A population model for the 2017/18 listeriosis outbreak in South Africa</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We introduce a compartmental model of ordinary differential equations for the population dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The model explicitly accommodates neonatal infections. Similarly as is common in cholera modeling, we include a compartment to represent the reservoir of bacteria. We also include a compartment to represent the incubation phase. For the 2017/18 listeriosis outbreak that happened in South Africa, we calculate the time pattern and intensity of the force of infection, and we determine numerical values for some of the parameters in the model. The model is calibrated using South African data, together with existing data in the open literature not necessarily from South Africa. We make projections on the future outlook of the epidemiology of the disease and the possibility of eradication.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Cholera</subject><subject>Differential equations</subject><subject>Disease</subject><subject>Diseases</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Food contamination & poisoning</subject><subject>Infection</subject><subject>Infections</subject><subject>Listeria</subject><subject>Listeriosis</subject><subject>Medicine and Health Sciences</subject><subject>Meningitis</subject><subject>Mortality</subject><subject>Mothers</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Newborn infants</subject><subject>Ordinary differential equations</subject><subject>Outbreaks</subject><subject>Pathogens</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population biology</subject><subject>Population dynamics</subject><subject>Pregnancy</subject><subject>Reservoirs (Water)</subject><subject>Sepsis</subject><subject>Time</subject><subject>Waterborne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbF39B6IDgujFbvMxk8zcCEvRulAoWPU2ZJKT3dTsZE0yov_ebHdadqQXkot8Pec9OSdvUbzEaIEpx2c3fgi9dIud72GBCGlbhB8Vp7ilZM4Ioo-P1ifFsxhvEKppw9jT4oQSzGhFm9PiYlnu_G5wMlnfl1uvwZXGhzJtoCQI8zPclM7GBMH6aGPph9QFkD9K25fXebMplyZYJZ8XT4x0EV6M86z49unj1_PP88uri9X58nKuWEvS3KCmIp3iRhKkKe1416CGVC02dUtRSwzGNci2Vh0jCirAlEFb6ZpxpKDWms6K1wfdnfNRjD2IglDOOOYUkUysDoT28kbsgt3K8Ed4acXtgQ9rIUOyyoHotGZQmZxedlVDGom4ltzoimKkGyqz1ocx29BtQSvoU5BuIjq96e1GrP0vwRHjdS5pVrwbBYL_OUBMYmujAudkD364fTenFWvw_t1v_kEfrm6k1jIXYHvjc161FxVLhjmpcd3QTC0eoPLQsLUqG8bYfD4JeD8JyEyC32kthxjF6vrL_7NX36fs2yN2A9KlTfRu2LstTsHqAKrgYwxg7puMkdj7_a4bYu93Mfo9h706_qD7oDuD07_H1vgR</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Witbooi, Peter Joseph</creator><creator>Africa, Charlene</creator><creator>Christoffels, Alan</creator><creator>Ahmed, Ibrahim Hussin Ibrahim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1304-0282</orcidid></search><sort><creationdate>20200312</creationdate><title>A population model for the 2017/18 listeriosis outbreak in South Africa</title><author>Witbooi, Peter Joseph ; Africa, Charlene ; Christoffels, Alan ; Ahmed, Ibrahim Hussin Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f0842bc7fa20d33b7b8082491f593092f115ea95cb62ce4e136e94d5670ce5dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Cholera</topic><topic>Differential equations</topic><topic>Disease</topic><topic>Diseases</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Food contamination & poisoning</topic><topic>Infection</topic><topic>Infections</topic><topic>Listeria</topic><topic>Listeriosis</topic><topic>Medicine and Health Sciences</topic><topic>Meningitis</topic><topic>Mortality</topic><topic>Mothers</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Newborn infants</topic><topic>Ordinary differential equations</topic><topic>Outbreaks</topic><topic>Pathogens</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population biology</topic><topic>Population dynamics</topic><topic>Pregnancy</topic><topic>Reservoirs (Water)</topic><topic>Sepsis</topic><topic>Time</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witbooi, Peter Joseph</creatorcontrib><creatorcontrib>Africa, Charlene</creatorcontrib><creatorcontrib>Christoffels, Alan</creatorcontrib><creatorcontrib>Ahmed, Ibrahim Hussin Ibrahim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witbooi, Peter Joseph</au><au>Africa, Charlene</au><au>Christoffels, Alan</au><au>Ahmed, Ibrahim Hussin Ibrahim</au><au>Barbarossa, Maria Vittoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A population model for the 2017/18 listeriosis outbreak in South Africa</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>e0229901</spage><epage>e0229901</epage><pages>e0229901-e0229901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We introduce a compartmental model of ordinary differential equations for the population dynamics of listeriosis, and we derive a model for analysing a listeriosis outbreak. The model explicitly accommodates neonatal infections. Similarly as is common in cholera modeling, we include a compartment to represent the reservoir of bacteria. We also include a compartment to represent the incubation phase. For the 2017/18 listeriosis outbreak that happened in South Africa, we calculate the time pattern and intensity of the force of infection, and we determine numerical values for some of the parameters in the model. The model is calibrated using South African data, together with existing data in the open literature not necessarily from South Africa. We make projections on the future outlook of the epidemiology of the disease and the possibility of eradication.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32163438</pmid><doi>10.1371/journal.pone.0229901</doi><tpages>e0229901</tpages><orcidid>https://orcid.org/0000-0003-1304-0282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-03, Vol.15 (3), p.e0229901-e0229901 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2376717302 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Applied mathematics Bacteria Bioinformatics Biology and Life Sciences Cholera Differential equations Disease Diseases Epidemics Epidemiology Food contamination & poisoning Infection Infections Listeria Listeriosis Medicine and Health Sciences Meningitis Mortality Mothers Neonates Newborn babies Newborn infants Ordinary differential equations Outbreaks Pathogens People and places Physical Sciences Population Population biology Population dynamics Pregnancy Reservoirs (Water) Sepsis Time Waterborne diseases |
title | A population model for the 2017/18 listeriosis outbreak in South Africa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20population%20model%20for%20the%202017/18%20listeriosis%20outbreak%20in%20South%20Africa&rft.jtitle=PloS%20one&rft.au=Witbooi,%20Peter%20Joseph&rft.date=2020-03-12&rft.volume=15&rft.issue=3&rft.spage=e0229901&rft.epage=e0229901&rft.pages=e0229901-e0229901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0229901&rft_dat=%3Cgale_plos_%3EA617251583%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376717302&rft_id=info:pmid/32163438&rft_galeid=A617251583&rft_doaj_id=oai_doaj_org_article_bdd6e4f491ab4828a07da7fd4310d83a&rfr_iscdi=true |