Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay
Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual eva...
Gespeichert in:
Veröffentlicht in: | PloS one 2020, Vol.15 (2), p.e0229620-e0229620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0229620 |
---|---|
container_issue | 2 |
container_start_page | e0229620 |
container_title | PloS one |
container_volume | 15 |
creator | Hohmann, Tim Kessler, Jacqueline Vordermark, Dirk Dehghani, Faramarz |
description | Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions. |
doi_str_mv | 10.1371/journal.pone.0229620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2365140168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac95de9f54bd4336b6f2bce190f924f9</doaj_id><sourcerecordid>2366635539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-17692ae837ddaa529e67a90d3478e8f545da9c2ec630598f2b2c5355656d00413</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEhs0MfsROvEEalUIrVbABiZ11Y99MMzjxYCeV-gF8Ef_BN-HpZKoWsbJln8c9V6coXjK6ZKJi7zZhigP45TYMuKSca8Xpo-KYacEX-Soe37sfFc9S2lAqRa3U0-JIcEaZVPK4-HV2DX6CsQsDCS3pwV51AxKPEIduWJM-OPSJtCESmMbQZ6QlDke0B8qHzyviwtR4JGmMMDjSRIQfiUA7YiRdjOC6vcGUdpJA_vw-56vvWdR2BFKCm-fFkxZ8whfzeVJ8-3j29fR8cfnl08Xp6nJhJVfjglVKc8BaVM4BSK5RVaCpE2VVY93KUjrQlqNVgkpdt7zhVgqZgypHacnESfF6r7v1IZl5g8lwoSQrKVN1RlzsES7Axmxj10O8MQE6c_sQ4tpAzDvwaMBq6VBn28aVQqhGZUOLTNNW87LVWev97DY1PTqLQ96PfyD68Gforsw6XJuKlqJSIgu8nQVi-DlhGk3fJYvew4Bhup1bqZxP7Lze_AP9f7pyj7IxpBSxvRuGUbNr1YFldq0yc6sy7dX9IHekQ43EXwFXzLE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365140168</pqid></control><display><type>article</type><title>Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hohmann, Tim ; Kessler, Jacqueline ; Vordermark, Dirk ; Dehghani, Faramarz</creator><contributor>Sobol, Robert W.</contributor><creatorcontrib>Hohmann, Tim ; Kessler, Jacqueline ; Vordermark, Dirk ; Dehghani, Faramarz ; Sobol, Robert W.</creatorcontrib><description>Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0229620</identifier><identifier>PMID: 32101565</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Apoptosis ; Bayesian analysis ; Biology and life sciences ; Cell culture ; Cell survival ; Classifiers ; Codes ; Computer and Information Sciences ; Correlation coefficient ; Correlation coefficients ; Deoxyribonucleic acid ; DNA ; DNA damage ; Engineering and Technology ; Evaluation ; Image classification ; Ionizing radiation ; Irradiation ; Learning algorithms ; Machine learning ; Multilayers ; Physical Sciences ; Principal components analysis ; Quality ; Radiation ; Radiation damage ; Radiation therapy ; Research and Analysis Methods ; Stability analysis ; Support vector machines ; Systems analysis</subject><ispartof>PloS one, 2020, Vol.15 (2), p.e0229620-e0229620</ispartof><rights>2020 Hohmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Hohmann et al 2020 Hohmann et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-17692ae837ddaa529e67a90d3478e8f545da9c2ec630598f2b2c5355656d00413</citedby><cites>FETCH-LOGICAL-c526t-17692ae837ddaa529e67a90d3478e8f545da9c2ec630598f2b2c5355656d00413</cites><orcidid>0000-0002-0304-7221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,4024,23866,27923,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32101565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sobol, Robert W.</contributor><creatorcontrib>Hohmann, Tim</creatorcontrib><creatorcontrib>Kessler, Jacqueline</creatorcontrib><creatorcontrib>Vordermark, Dirk</creatorcontrib><creatorcontrib>Dehghani, Faramarz</creatorcontrib><title>Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions.</description><subject>Algorithms</subject><subject>Apoptosis</subject><subject>Bayesian analysis</subject><subject>Biology and life sciences</subject><subject>Cell culture</subject><subject>Cell survival</subject><subject>Classifiers</subject><subject>Codes</subject><subject>Computer and Information Sciences</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Image classification</subject><subject>Ionizing radiation</subject><subject>Irradiation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Quality</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation therapy</subject><subject>Research and Analysis Methods</subject><subject>Stability analysis</subject><subject>Support vector machines</subject><subject>Systems analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEhs0MfsROvEEalUIrVbABiZ11Y99MMzjxYCeV-gF8Ef_BN-HpZKoWsbJln8c9V6coXjK6ZKJi7zZhigP45TYMuKSca8Xpo-KYacEX-Soe37sfFc9S2lAqRa3U0-JIcEaZVPK4-HV2DX6CsQsDCS3pwV51AxKPEIduWJM-OPSJtCESmMbQZ6QlDke0B8qHzyviwtR4JGmMMDjSRIQfiUA7YiRdjOC6vcGUdpJA_vw-56vvWdR2BFKCm-fFkxZ8whfzeVJ8-3j29fR8cfnl08Xp6nJhJVfjglVKc8BaVM4BSK5RVaCpE2VVY93KUjrQlqNVgkpdt7zhVgqZgypHacnESfF6r7v1IZl5g8lwoSQrKVN1RlzsES7Axmxj10O8MQE6c_sQ4tpAzDvwaMBq6VBn28aVQqhGZUOLTNNW87LVWev97DY1PTqLQ96PfyD68Gforsw6XJuKlqJSIgu8nQVi-DlhGk3fJYvew4Bhup1bqZxP7Lze_AP9f7pyj7IxpBSxvRuGUbNr1YFldq0yc6sy7dX9IHekQ43EXwFXzLE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hohmann, Tim</creator><creator>Kessler, Jacqueline</creator><creator>Vordermark, Dirk</creator><creator>Dehghani, Faramarz</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0304-7221</orcidid></search><sort><creationdate>2020</creationdate><title>Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay</title><author>Hohmann, Tim ; Kessler, Jacqueline ; Vordermark, Dirk ; Dehghani, Faramarz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-17692ae837ddaa529e67a90d3478e8f545da9c2ec630598f2b2c5355656d00413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Apoptosis</topic><topic>Bayesian analysis</topic><topic>Biology and life sciences</topic><topic>Cell culture</topic><topic>Cell survival</topic><topic>Classifiers</topic><topic>Codes</topic><topic>Computer and Information Sciences</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Image classification</topic><topic>Ionizing radiation</topic><topic>Irradiation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Quality</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation therapy</topic><topic>Research and Analysis Methods</topic><topic>Stability analysis</topic><topic>Support vector machines</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hohmann, Tim</creatorcontrib><creatorcontrib>Kessler, Jacqueline</creatorcontrib><creatorcontrib>Vordermark, Dirk</creatorcontrib><creatorcontrib>Dehghani, Faramarz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohmann, Tim</au><au>Kessler, Jacqueline</au><au>Vordermark, Dirk</au><au>Dehghani, Faramarz</au><au>Sobol, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>e0229620</spage><epage>e0229620</epage><pages>e0229620-e0229620</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32101565</pmid><doi>10.1371/journal.pone.0229620</doi><orcidid>https://orcid.org/0000-0002-0304-7221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020, Vol.15 (2), p.e0229620-e0229620 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2365140168 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Apoptosis Bayesian analysis Biology and life sciences Cell culture Cell survival Classifiers Codes Computer and Information Sciences Correlation coefficient Correlation coefficients Deoxyribonucleic acid DNA DNA damage Engineering and Technology Evaluation Image classification Ionizing radiation Irradiation Learning algorithms Machine learning Multilayers Physical Sciences Principal components analysis Quality Radiation Radiation damage Radiation therapy Research and Analysis Methods Stability analysis Support vector machines Systems analysis |
title | Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20machine%20learning%20models%20for%20automatic%20detection%20of%20DNA%20double%20strand%20breaks%20after%20irradiation%20using%20a%20%CE%B3H2AX%20foci%20assay&rft.jtitle=PloS%20one&rft.au=Hohmann,%20Tim&rft.date=2020&rft.volume=15&rft.issue=2&rft.spage=e0229620&rft.epage=e0229620&rft.pages=e0229620-e0229620&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0229620&rft_dat=%3Cproquest_plos_%3E2366635539%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365140168&rft_id=info:pmid/32101565&rft_doaj_id=oai_doaj_org_article_ac95de9f54bd4336b6f2bce190f924f9&rfr_iscdi=true |