Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures

Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0224718
Hauptverfasser: Machani, Maxwell G, Ochomo, Eric, Amimo, Fred, Kosgei, Jackline, Munga, Stephen, Zhou, Guofa, Githeko, Andrew K, Yan, Guiyun, Afrane, Yaw A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e0224718
container_title PloS one
container_volume 15
creator Machani, Maxwell G
Ochomo, Eric
Amimo, Fred
Kosgei, Jackline
Munga, Stephen
Zhou, Guofa
Githeko, Andrew K
Yan, Guiyun
Afrane, Yaw A
description Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for i
doi_str_mv 10.1371/journal.pone.0224718
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2363940154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615162746</galeid><doaj_id>oai_doaj_org_article_f1a67e5406ea41ce825a53ca1ce617d9</doaj_id><sourcerecordid>A615162746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c5f91d988d36a2a1625850ad326ce10fccc0d20b20932363f9bf5dfce94391553</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDguDFjPlo0tYLYVlWHVxYWD9uw5k0bTOkzZi0s7vX_nHTne4yBQVpSw_p875N3uQkyUuCl4Rl5P3GDb4Du9y6Ti8xpWlG8kfJMSkYXQiK2eOD-ih5FsIGY85yIZ4mR4ziIktxdpz8vtKhN12N1rqBnYmeyFWoBQveANpp1TsfkOlQY-rGQlei8bHu-q4OptdhFFxHF-079FV3t_ABrdqtNQp64zoU77kdUq7rvbOo1RAGr8Pz5EkFNugX0_sk-fHp_PvZl8XF5efV2enFQomC9gvFq4KURZ6XTAAFIijPOYaSUaE0wZVSCpcUr-PaGGWCVcW64mWldJGygnDOTpLXe9-tdUFO-QU5skWKCU8jsdoTpYON3HrTgr-VDoy8G3C-luB7o6yWFQGRaZ5ioSElSueUA2cKYilIVhbR6-P0t2Hd6lLpuGiwM9P5l840snY7meGUZAWLBm8mA-9-DTHgf0x5omqIszJd5aKZak1Q8lQQHlPKUhGp5V-oeJW6NXE_dGXi-EzwbiYY90zf9DUMIcjVt6v_Zy9_ztm3B2yjwfZNcHYYj0qYg-keVN6F4HX1kBzBcmyA-zTk2AByaoAoe3WY-oPo_sSzP6CXAoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363940154</pqid></control><display><type>article</type><title>Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Machani, Maxwell G ; Ochomo, Eric ; Amimo, Fred ; Kosgei, Jackline ; Munga, Stephen ; Zhou, Guofa ; Githeko, Andrew K ; Yan, Guiyun ; Afrane, Yaw A</creator><creatorcontrib>Machani, Maxwell G ; Ochomo, Eric ; Amimo, Fred ; Kosgei, Jackline ; Munga, Stephen ; Zhou, Guofa ; Githeko, Andrew K ; Yan, Guiyun ; Afrane, Yaw A</creatorcontrib><description>Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p &lt; 0.0001, An. funestus; F1, 655 = 36.555, p &lt; 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0224718</identifier><identifier>PMID: 32097407</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anopheles - classification ; Anopheles - genetics ; Anopheles - parasitology ; Behavior ; Bioassays ; Biology and Life Sciences ; Biting ; Collections ; Control ; Culicidae ; Deltamethrin ; Disease transmission ; Entomology ; Enzyme-Linked Immunosorbent Assay ; Enzymes ; Feeding Behavior - drug effects ; Female ; Genotype ; Genotypes ; Health aspects ; Health sciences ; Host preferences ; Host-Seeking Behavior - drug effects ; Indoor environments ; Infection ; Infections ; Insecticide resistance ; Insecticide Resistance - genetics ; Insecticide-Treated Bednets ; Insecticides ; Insecticides - pharmacology ; Kenya ; Kenya - epidemiology ; Malaria ; Malaria, Falciparum - epidemiology ; Malaria, Falciparum - prevention &amp; control ; Malaria, Falciparum - transmission ; Medical research ; Medical tests ; Medicine and Health Sciences ; Mortality ; Mosquito Control - methods ; Mosquito Vectors - physiology ; Mosquitoes ; Mutation ; Nitriles - pharmacology ; Offspring ; Outdoors ; People and Places ; Pesticide resistance ; Plasmodium falciparum ; Plasmodium falciparum - immunology ; Polymerase Chain Reaction ; Progeny ; Public health ; Pyrethrins - pharmacology ; Rainy season ; Rest - physiology ; Resting behavior ; Speciation ; Sporozoites - immunology ; Strategic planning (Business) ; Sub-Saharan Africa ; Vector-borne diseases ; Vectors</subject><ispartof>PloS one, 2020-02, Vol.15 (2), p.e0224718</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c5f91d988d36a2a1625850ad326ce10fccc0d20b20932363f9bf5dfce94391553</citedby><cites>FETCH-LOGICAL-c692t-c5f91d988d36a2a1625850ad326ce10fccc0d20b20932363f9bf5dfce94391553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32097407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machani, Maxwell G</creatorcontrib><creatorcontrib>Ochomo, Eric</creatorcontrib><creatorcontrib>Amimo, Fred</creatorcontrib><creatorcontrib>Kosgei, Jackline</creatorcontrib><creatorcontrib>Munga, Stephen</creatorcontrib><creatorcontrib>Zhou, Guofa</creatorcontrib><creatorcontrib>Githeko, Andrew K</creatorcontrib><creatorcontrib>Yan, Guiyun</creatorcontrib><creatorcontrib>Afrane, Yaw A</creatorcontrib><title>Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p &lt; 0.0001, An. funestus; F1, 655 = 36.555, p &lt; 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.</description><subject>Animals</subject><subject>Anopheles - classification</subject><subject>Anopheles - genetics</subject><subject>Anopheles - parasitology</subject><subject>Behavior</subject><subject>Bioassays</subject><subject>Biology and Life Sciences</subject><subject>Biting</subject><subject>Collections</subject><subject>Control</subject><subject>Culicidae</subject><subject>Deltamethrin</subject><subject>Disease transmission</subject><subject>Entomology</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Enzymes</subject><subject>Feeding Behavior - drug effects</subject><subject>Female</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Health sciences</subject><subject>Host preferences</subject><subject>Host-Seeking Behavior - drug effects</subject><subject>Indoor environments</subject><subject>Infection</subject><subject>Infections</subject><subject>Insecticide resistance</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticide-Treated Bednets</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Kenya</subject><subject>Kenya - epidemiology</subject><subject>Malaria</subject><subject>Malaria, Falciparum - epidemiology</subject><subject>Malaria, Falciparum - prevention &amp; control</subject><subject>Malaria, Falciparum - transmission</subject><subject>Medical research</subject><subject>Medical tests</subject><subject>Medicine and Health Sciences</subject><subject>Mortality</subject><subject>Mosquito Control - methods</subject><subject>Mosquito Vectors - physiology</subject><subject>Mosquitoes</subject><subject>Mutation</subject><subject>Nitriles - pharmacology</subject><subject>Offspring</subject><subject>Outdoors</subject><subject>People and Places</subject><subject>Pesticide resistance</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - immunology</subject><subject>Polymerase Chain Reaction</subject><subject>Progeny</subject><subject>Public health</subject><subject>Pyrethrins - pharmacology</subject><subject>Rainy season</subject><subject>Rest - physiology</subject><subject>Resting behavior</subject><subject>Speciation</subject><subject>Sporozoites - immunology</subject><subject>Strategic planning (Business)</subject><subject>Sub-Saharan Africa</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDguDFjPlo0tYLYVlWHVxYWD9uw5k0bTOkzZi0s7vX_nHTne4yBQVpSw_p875N3uQkyUuCl4Rl5P3GDb4Du9y6Ti8xpWlG8kfJMSkYXQiK2eOD-ih5FsIGY85yIZ4mR4ziIktxdpz8vtKhN12N1rqBnYmeyFWoBQveANpp1TsfkOlQY-rGQlei8bHu-q4OptdhFFxHF-079FV3t_ABrdqtNQp64zoU77kdUq7rvbOo1RAGr8Pz5EkFNugX0_sk-fHp_PvZl8XF5efV2enFQomC9gvFq4KURZ6XTAAFIijPOYaSUaE0wZVSCpcUr-PaGGWCVcW64mWldJGygnDOTpLXe9-tdUFO-QU5skWKCU8jsdoTpYON3HrTgr-VDoy8G3C-luB7o6yWFQGRaZ5ioSElSueUA2cKYilIVhbR6-P0t2Hd6lLpuGiwM9P5l840snY7meGUZAWLBm8mA-9-DTHgf0x5omqIszJd5aKZak1Q8lQQHlPKUhGp5V-oeJW6NXE_dGXi-EzwbiYY90zf9DUMIcjVt6v_Zy9_ztm3B2yjwfZNcHYYj0qYg-keVN6F4HX1kBzBcmyA-zTk2AByaoAoe3WY-oPo_sSzP6CXAoA</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Machani, Maxwell G</creator><creator>Ochomo, Eric</creator><creator>Amimo, Fred</creator><creator>Kosgei, Jackline</creator><creator>Munga, Stephen</creator><creator>Zhou, Guofa</creator><creator>Githeko, Andrew K</creator><creator>Yan, Guiyun</creator><creator>Afrane, Yaw A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200225</creationdate><title>Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures</title><author>Machani, Maxwell G ; Ochomo, Eric ; Amimo, Fred ; Kosgei, Jackline ; Munga, Stephen ; Zhou, Guofa ; Githeko, Andrew K ; Yan, Guiyun ; Afrane, Yaw A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c5f91d988d36a2a1625850ad326ce10fccc0d20b20932363f9bf5dfce94391553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anopheles - classification</topic><topic>Anopheles - genetics</topic><topic>Anopheles - parasitology</topic><topic>Behavior</topic><topic>Bioassays</topic><topic>Biology and Life Sciences</topic><topic>Biting</topic><topic>Collections</topic><topic>Control</topic><topic>Culicidae</topic><topic>Deltamethrin</topic><topic>Disease transmission</topic><topic>Entomology</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Enzymes</topic><topic>Feeding Behavior - drug effects</topic><topic>Female</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Health sciences</topic><topic>Host preferences</topic><topic>Host-Seeking Behavior - drug effects</topic><topic>Indoor environments</topic><topic>Infection</topic><topic>Infections</topic><topic>Insecticide resistance</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticide-Treated Bednets</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Kenya</topic><topic>Kenya - epidemiology</topic><topic>Malaria</topic><topic>Malaria, Falciparum - epidemiology</topic><topic>Malaria, Falciparum - prevention &amp; control</topic><topic>Malaria, Falciparum - transmission</topic><topic>Medical research</topic><topic>Medical tests</topic><topic>Medicine and Health Sciences</topic><topic>Mortality</topic><topic>Mosquito Control - methods</topic><topic>Mosquito Vectors - physiology</topic><topic>Mosquitoes</topic><topic>Mutation</topic><topic>Nitriles - pharmacology</topic><topic>Offspring</topic><topic>Outdoors</topic><topic>People and Places</topic><topic>Pesticide resistance</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - immunology</topic><topic>Polymerase Chain Reaction</topic><topic>Progeny</topic><topic>Public health</topic><topic>Pyrethrins - pharmacology</topic><topic>Rainy season</topic><topic>Rest - physiology</topic><topic>Resting behavior</topic><topic>Speciation</topic><topic>Sporozoites - immunology</topic><topic>Strategic planning (Business)</topic><topic>Sub-Saharan Africa</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machani, Maxwell G</creatorcontrib><creatorcontrib>Ochomo, Eric</creatorcontrib><creatorcontrib>Amimo, Fred</creatorcontrib><creatorcontrib>Kosgei, Jackline</creatorcontrib><creatorcontrib>Munga, Stephen</creatorcontrib><creatorcontrib>Zhou, Guofa</creatorcontrib><creatorcontrib>Githeko, Andrew K</creatorcontrib><creatorcontrib>Yan, Guiyun</creatorcontrib><creatorcontrib>Afrane, Yaw A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machani, Maxwell G</au><au>Ochomo, Eric</au><au>Amimo, Fred</au><au>Kosgei, Jackline</au><au>Munga, Stephen</au><au>Zhou, Guofa</au><au>Githeko, Andrew K</au><au>Yan, Guiyun</au><au>Afrane, Yaw A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>e0224718</spage><pages>e0224718-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p &lt; 0.0001, An. funestus; F1, 655 = 36.555, p &lt; 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32097407</pmid><doi>10.1371/journal.pone.0224718</doi><tpages>e0224718</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-02, Vol.15 (2), p.e0224718
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2363940154
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Anopheles - classification
Anopheles - genetics
Anopheles - parasitology
Behavior
Bioassays
Biology and Life Sciences
Biting
Collections
Control
Culicidae
Deltamethrin
Disease transmission
Entomology
Enzyme-Linked Immunosorbent Assay
Enzymes
Feeding Behavior - drug effects
Female
Genotype
Genotypes
Health aspects
Health sciences
Host preferences
Host-Seeking Behavior - drug effects
Indoor environments
Infection
Infections
Insecticide resistance
Insecticide Resistance - genetics
Insecticide-Treated Bednets
Insecticides
Insecticides - pharmacology
Kenya
Kenya - epidemiology
Malaria
Malaria, Falciparum - epidemiology
Malaria, Falciparum - prevention & control
Malaria, Falciparum - transmission
Medical research
Medical tests
Medicine and Health Sciences
Mortality
Mosquito Control - methods
Mosquito Vectors - physiology
Mosquitoes
Mutation
Nitriles - pharmacology
Offspring
Outdoors
People and Places
Pesticide resistance
Plasmodium falciparum
Plasmodium falciparum - immunology
Polymerase Chain Reaction
Progeny
Public health
Pyrethrins - pharmacology
Rainy season
Rest - physiology
Resting behavior
Speciation
Sporozoites - immunology
Strategic planning (Business)
Sub-Saharan Africa
Vector-borne diseases
Vectors
title Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20behaviour%20of%20malaria%20vectors%20in%20highland%20and%20lowland%20sites%20of%20western%20Kenya:%20Implication%20on%20malaria%20vector%20control%20measures&rft.jtitle=PloS%20one&rft.au=Machani,%20Maxwell%20G&rft.date=2020-02-25&rft.volume=15&rft.issue=2&rft.spage=e0224718&rft.pages=e0224718-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0224718&rft_dat=%3Cgale_plos_%3EA615162746%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363940154&rft_id=info:pmid/32097407&rft_galeid=A615162746&rft_doaj_id=oai_doaj_org_article_f1a67e5406ea41ce825a53ca1ce617d9&rfr_iscdi=true