Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data

Chronic liver disease (CLD) and cirrhosis are leading causes of death globally with the burden of disease rising significantly over the past several decades. Defining the etiology of liver disease is important for understanding liver disease epidemiology, healthcare planning, and outcomes. The aim o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-02, Vol.15 (2), p.e0229218-e0229218
Hauptverfasser: Philip, George, Djerboua, Maya, Carlone, David, Flemming, Jennifer A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0229218
container_issue 2
container_start_page e0229218
container_title PloS one
container_volume 15
creator Philip, George
Djerboua, Maya
Carlone, David
Flemming, Jennifer A
description Chronic liver disease (CLD) and cirrhosis are leading causes of death globally with the burden of disease rising significantly over the past several decades. Defining the etiology of liver disease is important for understanding liver disease epidemiology, healthcare planning, and outcomes. The aim of this study was to validate a hierarchical algorithm for CLD and cirrhosis etiology in administrative healthcare data. Consecutive patients with CLD or cirrhosis attending an outpatient hepatology clinic in Ontario, Canada from 05/01/2013-08/31/2013 underwent detailed chart abstraction. Gold standard liver disease etiology was determined by an attending hepatologist as hepatitis C (HCV), hepatitis B (HBV), alcohol-related, non-alcoholic fatty liver disease (NAFLD)/cryptogenic, autoimmune or hemochromatosis. Individual data was linked to routinely collected administrative healthcare data at ICES. Diagnostic accuracy of a hierarchical algorithm incorporating both laboratory and administrative codes to define etiology was evaluated by calculating sensitivity, specificity, positive (PPV) and negative predictive values (NPV), and kappa's agreement. 442 individuals underwent chart abstraction (median age 53 years, 53% cirrhosis, 45% HCV, 26% NAFLD, 10% alcohol-related). In patients with cirrhosis, the algorithm had adequate sensitivity/PPV (>75%) and excellent specificity/NPV (>90%) for all etiologies. In those without cirrhosis, the algorithm was excellent for all etiologies except for hemochromatosis and autoimmune diseases. A hierarchical algorithm incorporating laboratory and administrative coding can accurately define cirrhosis etiology in routinely collected healthcare data. These results should facilitate health services research in this growing patient population.
doi_str_mv 10.1371/journal.pone.0229218
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2357397227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614124865</galeid><doaj_id>oai_doaj_org_article_900f5da879704329b43c1fb259d85a07</doaj_id><sourcerecordid>A614124865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c83d9533f18f06b627a6a1b85ff58135747712019d8321960ead6ae285a69f613</originalsourceid><addsrcrecordid>eNqNk0tr3DAUhU1padK0_6C0gkJpFzPVw9ZjUwihj4FAoI9sxR1ZGmuQrankCc2qf72aR8JMyaJ4YSN_5xzf63ur6iXBU8IE-bCM6zRAmK7iYKeYUkWJfFSdEsXohFPMHh88n1TPcl5i3DDJ-dPqhFHMFWPitPpzDcG3MPo4oOgQoM7bBMl03kBAEBYx-bHr0RhRa50fLDJdioM3KPgbm1Drs4VsEQwtMj6lLmafkS1-IS5ukR8QtL0ffB5TCbmxqLMQxs5AsqjEwvPqiYOQ7Yv9_az6-fnTj4uvk8urL7OL88uJ4YqOEyNZqxrGHJEO8zmnAjiQuWycayRhjaiFIBQT1UpGieLYQsvBUtkAV44Tdla93vmuQsx637usaZEyJSgVhZjtiDbCUq-S7yHd6ghebw9iWmhIozfBaoWxa1qQQglcM6rmNTPEzWlT4hvAG6-P-7T1vLetsUMpPxyZHr8ZfKcX8UYLTCXlTTF4tzdI8dfa5lH3PhsbAgw2rrffLRshlcIFffMP-nB1e2oBpQA_uFhyzcZUn3NSE1rLbez0Aapcre29KYPmfDk_Erw_EhRmtL_HBaxz1rPv3_6fvbo-Zt8esLuZyTGsN3Oaj8F6B5oUc07W3TeZYL3Zk7tu6M2e6P2eFNmrwx90L7pbDPYXaiUNlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357397227</pqid></control><display><type>article</type><title>Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Philip, George ; Djerboua, Maya ; Carlone, David ; Flemming, Jennifer A</creator><contributor>Lin, Wenyu</contributor><creatorcontrib>Philip, George ; Djerboua, Maya ; Carlone, David ; Flemming, Jennifer A ; Lin, Wenyu</creatorcontrib><description>Chronic liver disease (CLD) and cirrhosis are leading causes of death globally with the burden of disease rising significantly over the past several decades. Defining the etiology of liver disease is important for understanding liver disease epidemiology, healthcare planning, and outcomes. The aim of this study was to validate a hierarchical algorithm for CLD and cirrhosis etiology in administrative healthcare data. Consecutive patients with CLD or cirrhosis attending an outpatient hepatology clinic in Ontario, Canada from 05/01/2013-08/31/2013 underwent detailed chart abstraction. Gold standard liver disease etiology was determined by an attending hepatologist as hepatitis C (HCV), hepatitis B (HBV), alcohol-related, non-alcoholic fatty liver disease (NAFLD)/cryptogenic, autoimmune or hemochromatosis. Individual data was linked to routinely collected administrative healthcare data at ICES. Diagnostic accuracy of a hierarchical algorithm incorporating both laboratory and administrative codes to define etiology was evaluated by calculating sensitivity, specificity, positive (PPV) and negative predictive values (NPV), and kappa's agreement. 442 individuals underwent chart abstraction (median age 53 years, 53% cirrhosis, 45% HCV, 26% NAFLD, 10% alcohol-related). In patients with cirrhosis, the algorithm had adequate sensitivity/PPV (&gt;75%) and excellent specificity/NPV (&gt;90%) for all etiologies. In those without cirrhosis, the algorithm was excellent for all etiologies except for hemochromatosis and autoimmune diseases. A hierarchical algorithm incorporating laboratory and administrative coding can accurately define cirrhosis etiology in routinely collected healthcare data. These results should facilitate health services research in this growing patient population.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0229218</identifier><identifier>PMID: 32069337</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alcohol ; Algorithms ; Ambulatory care ; Autoimmune diseases ; Biology and life sciences ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - etiology ; Cirrhosis ; Clinical Coding ; Clinical medicine ; Codes ; Cohort Studies ; Databases, Factual ; Death ; Development and progression ; Diagnostic systems ; Diseases ; Electronic Health Records - statistics &amp; numerical data ; Emergency medical care ; Epidemiology ; Etiology ; Etiology (Medicine) ; Fatty liver ; Female ; Health care ; Health care policy ; Health sciences ; Hemochromatosis ; Hepatitis ; Hepatitis - diagnosis ; Hepatitis - etiology ; Hepatitis B ; Hepatitis C ; Hepatitis C virus ; Hepatology ; Humans ; Information systems ; Laboratories ; Liver ; Liver cirrhosis ; Liver Cirrhosis - diagnosis ; Liver Cirrhosis - etiology ; Liver diseases ; Liver Neoplasms - diagnosis ; Liver Neoplasms - etiology ; Lung diseases ; Male ; Medical care quality ; Medical research ; Medicine ; Medicine and Health Sciences ; Middle Aged ; Non-alcoholic Fatty Liver Disease - diagnosis ; Non-alcoholic Fatty Liver Disease - etiology ; Patients ; Privacy ; Prognosis ; Public health ; Sensitivity analysis</subject><ispartof>PloS one, 2020-02, Vol.15 (2), p.e0229218-e0229218</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Philip et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Philip et al 2020 Philip et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c83d9533f18f06b627a6a1b85ff58135747712019d8321960ead6ae285a69f613</citedby><cites>FETCH-LOGICAL-c692t-c83d9533f18f06b627a6a1b85ff58135747712019d8321960ead6ae285a69f613</cites><orcidid>0000-0002-9911-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32069337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lin, Wenyu</contributor><creatorcontrib>Philip, George</creatorcontrib><creatorcontrib>Djerboua, Maya</creatorcontrib><creatorcontrib>Carlone, David</creatorcontrib><creatorcontrib>Flemming, Jennifer A</creatorcontrib><title>Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chronic liver disease (CLD) and cirrhosis are leading causes of death globally with the burden of disease rising significantly over the past several decades. Defining the etiology of liver disease is important for understanding liver disease epidemiology, healthcare planning, and outcomes. The aim of this study was to validate a hierarchical algorithm for CLD and cirrhosis etiology in administrative healthcare data. Consecutive patients with CLD or cirrhosis attending an outpatient hepatology clinic in Ontario, Canada from 05/01/2013-08/31/2013 underwent detailed chart abstraction. Gold standard liver disease etiology was determined by an attending hepatologist as hepatitis C (HCV), hepatitis B (HBV), alcohol-related, non-alcoholic fatty liver disease (NAFLD)/cryptogenic, autoimmune or hemochromatosis. Individual data was linked to routinely collected administrative healthcare data at ICES. Diagnostic accuracy of a hierarchical algorithm incorporating both laboratory and administrative codes to define etiology was evaluated by calculating sensitivity, specificity, positive (PPV) and negative predictive values (NPV), and kappa's agreement. 442 individuals underwent chart abstraction (median age 53 years, 53% cirrhosis, 45% HCV, 26% NAFLD, 10% alcohol-related). In patients with cirrhosis, the algorithm had adequate sensitivity/PPV (&gt;75%) and excellent specificity/NPV (&gt;90%) for all etiologies. In those without cirrhosis, the algorithm was excellent for all etiologies except for hemochromatosis and autoimmune diseases. A hierarchical algorithm incorporating laboratory and administrative coding can accurately define cirrhosis etiology in routinely collected healthcare data. These results should facilitate health services research in this growing patient population.</description><subject>Alcohol</subject><subject>Algorithms</subject><subject>Ambulatory care</subject><subject>Autoimmune diseases</subject><subject>Biology and life sciences</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - etiology</subject><subject>Cirrhosis</subject><subject>Clinical Coding</subject><subject>Clinical medicine</subject><subject>Codes</subject><subject>Cohort Studies</subject><subject>Databases, Factual</subject><subject>Death</subject><subject>Development and progression</subject><subject>Diagnostic systems</subject><subject>Diseases</subject><subject>Electronic Health Records - statistics &amp; numerical data</subject><subject>Emergency medical care</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Etiology (Medicine)</subject><subject>Fatty liver</subject><subject>Female</subject><subject>Health care</subject><subject>Health care policy</subject><subject>Health sciences</subject><subject>Hemochromatosis</subject><subject>Hepatitis</subject><subject>Hepatitis - diagnosis</subject><subject>Hepatitis - etiology</subject><subject>Hepatitis B</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Information systems</subject><subject>Laboratories</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - diagnosis</subject><subject>Liver Cirrhosis - etiology</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - etiology</subject><subject>Lung diseases</subject><subject>Male</subject><subject>Medical care quality</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Non-alcoholic Fatty Liver Disease - diagnosis</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Patients</subject><subject>Privacy</subject><subject>Prognosis</subject><subject>Public health</subject><subject>Sensitivity analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAUhU1padK0_6C0gkJpFzPVw9ZjUwihj4FAoI9sxR1ZGmuQrankCc2qf72aR8JMyaJ4YSN_5xzf63ur6iXBU8IE-bCM6zRAmK7iYKeYUkWJfFSdEsXohFPMHh88n1TPcl5i3DDJ-dPqhFHMFWPitPpzDcG3MPo4oOgQoM7bBMl03kBAEBYx-bHr0RhRa50fLDJdioM3KPgbm1Drs4VsEQwtMj6lLmafkS1-IS5ukR8QtL0ffB5TCbmxqLMQxs5AsqjEwvPqiYOQ7Yv9_az6-fnTj4uvk8urL7OL88uJ4YqOEyNZqxrGHJEO8zmnAjiQuWycayRhjaiFIBQT1UpGieLYQsvBUtkAV44Tdla93vmuQsx637usaZEyJSgVhZjtiDbCUq-S7yHd6ghebw9iWmhIozfBaoWxa1qQQglcM6rmNTPEzWlT4hvAG6-P-7T1vLetsUMpPxyZHr8ZfKcX8UYLTCXlTTF4tzdI8dfa5lH3PhsbAgw2rrffLRshlcIFffMP-nB1e2oBpQA_uFhyzcZUn3NSE1rLbez0Aapcre29KYPmfDk_Erw_EhRmtL_HBaxz1rPv3_6fvbo-Zt8esLuZyTGsN3Oaj8F6B5oUc07W3TeZYL3Zk7tu6M2e6P2eFNmrwx90L7pbDPYXaiUNlA</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Philip, George</creator><creator>Djerboua, Maya</creator><creator>Carlone, David</creator><creator>Flemming, Jennifer A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9911-0925</orcidid></search><sort><creationdate>20200218</creationdate><title>Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data</title><author>Philip, George ; Djerboua, Maya ; Carlone, David ; Flemming, Jennifer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c83d9533f18f06b627a6a1b85ff58135747712019d8321960ead6ae285a69f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alcohol</topic><topic>Algorithms</topic><topic>Ambulatory care</topic><topic>Autoimmune diseases</topic><topic>Biology and life sciences</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - etiology</topic><topic>Cirrhosis</topic><topic>Clinical Coding</topic><topic>Clinical medicine</topic><topic>Codes</topic><topic>Cohort Studies</topic><topic>Databases, Factual</topic><topic>Death</topic><topic>Development and progression</topic><topic>Diagnostic systems</topic><topic>Diseases</topic><topic>Electronic Health Records - statistics &amp; numerical data</topic><topic>Emergency medical care</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Etiology (Medicine)</topic><topic>Fatty liver</topic><topic>Female</topic><topic>Health care</topic><topic>Health care policy</topic><topic>Health sciences</topic><topic>Hemochromatosis</topic><topic>Hepatitis</topic><topic>Hepatitis - diagnosis</topic><topic>Hepatitis - etiology</topic><topic>Hepatitis B</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Information systems</topic><topic>Laboratories</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - diagnosis</topic><topic>Liver Cirrhosis - etiology</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - etiology</topic><topic>Lung diseases</topic><topic>Male</topic><topic>Medical care quality</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Non-alcoholic Fatty Liver Disease - diagnosis</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Patients</topic><topic>Privacy</topic><topic>Prognosis</topic><topic>Public health</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philip, George</creatorcontrib><creatorcontrib>Djerboua, Maya</creatorcontrib><creatorcontrib>Carlone, David</creatorcontrib><creatorcontrib>Flemming, Jennifer A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philip, George</au><au>Djerboua, Maya</au><au>Carlone, David</au><au>Flemming, Jennifer A</au><au>Lin, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>e0229218</spage><epage>e0229218</epage><pages>e0229218-e0229218</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chronic liver disease (CLD) and cirrhosis are leading causes of death globally with the burden of disease rising significantly over the past several decades. Defining the etiology of liver disease is important for understanding liver disease epidemiology, healthcare planning, and outcomes. The aim of this study was to validate a hierarchical algorithm for CLD and cirrhosis etiology in administrative healthcare data. Consecutive patients with CLD or cirrhosis attending an outpatient hepatology clinic in Ontario, Canada from 05/01/2013-08/31/2013 underwent detailed chart abstraction. Gold standard liver disease etiology was determined by an attending hepatologist as hepatitis C (HCV), hepatitis B (HBV), alcohol-related, non-alcoholic fatty liver disease (NAFLD)/cryptogenic, autoimmune or hemochromatosis. Individual data was linked to routinely collected administrative healthcare data at ICES. Diagnostic accuracy of a hierarchical algorithm incorporating both laboratory and administrative codes to define etiology was evaluated by calculating sensitivity, specificity, positive (PPV) and negative predictive values (NPV), and kappa's agreement. 442 individuals underwent chart abstraction (median age 53 years, 53% cirrhosis, 45% HCV, 26% NAFLD, 10% alcohol-related). In patients with cirrhosis, the algorithm had adequate sensitivity/PPV (&gt;75%) and excellent specificity/NPV (&gt;90%) for all etiologies. In those without cirrhosis, the algorithm was excellent for all etiologies except for hemochromatosis and autoimmune diseases. A hierarchical algorithm incorporating laboratory and administrative coding can accurately define cirrhosis etiology in routinely collected healthcare data. These results should facilitate health services research in this growing patient population.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32069337</pmid><doi>10.1371/journal.pone.0229218</doi><tpages>e0229218</tpages><orcidid>https://orcid.org/0000-0002-9911-0925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-02, Vol.15 (2), p.e0229218-e0229218
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2357397227
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alcohol
Algorithms
Ambulatory care
Autoimmune diseases
Biology and life sciences
Carcinoma, Hepatocellular - diagnosis
Carcinoma, Hepatocellular - etiology
Cirrhosis
Clinical Coding
Clinical medicine
Codes
Cohort Studies
Databases, Factual
Death
Development and progression
Diagnostic systems
Diseases
Electronic Health Records - statistics & numerical data
Emergency medical care
Epidemiology
Etiology
Etiology (Medicine)
Fatty liver
Female
Health care
Health care policy
Health sciences
Hemochromatosis
Hepatitis
Hepatitis - diagnosis
Hepatitis - etiology
Hepatitis B
Hepatitis C
Hepatitis C virus
Hepatology
Humans
Information systems
Laboratories
Liver
Liver cirrhosis
Liver Cirrhosis - diagnosis
Liver Cirrhosis - etiology
Liver diseases
Liver Neoplasms - diagnosis
Liver Neoplasms - etiology
Lung diseases
Male
Medical care quality
Medical research
Medicine
Medicine and Health Sciences
Middle Aged
Non-alcoholic Fatty Liver Disease - diagnosis
Non-alcoholic Fatty Liver Disease - etiology
Patients
Privacy
Prognosis
Public health
Sensitivity analysis
title Validation of a hierarchical algorithm to define chronic liver disease and cirrhosis etiology in administrative healthcare data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20a%20hierarchical%20algorithm%20to%20define%20chronic%20liver%20disease%20and%20cirrhosis%20etiology%20in%20administrative%20healthcare%20data&rft.jtitle=PloS%20one&rft.au=Philip,%20George&rft.date=2020-02-18&rft.volume=15&rft.issue=2&rft.spage=e0229218&rft.epage=e0229218&rft.pages=e0229218-e0229218&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0229218&rft_dat=%3Cgale_plos_%3EA614124865%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357397227&rft_id=info:pmid/32069337&rft_galeid=A614124865&rft_doaj_id=oai_doaj_org_article_900f5da879704329b43c1fb259d85a07&rfr_iscdi=true