A new method for inferring timetrees from temporally sampled molecular sequences

Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-01, Vol.16 (1), p.e1007046-e1007046
Hauptverfasser: Miura, Sayaka, Tamura, Koichiro, Tao, Qiqing, Huuki, Louise A, Kosakovsky Pond, Sergei L, Priest, Jessica, Deng, Jiamin, Kumar, Sudhir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007046
container_issue 1
container_start_page e1007046
container_title PLoS computational biology
container_volume 16
creator Miura, Sayaka
Tamura, Koichiro
Tao, Qiqing
Huuki, Louise A
Kosakovsky Pond, Sergei L
Priest, Jessica
Deng, Jiamin
Kumar, Sudhir
description Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.
doi_str_mv 10.1371/journal.pcbi.1007046
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2355997990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a64b8cc22e1849b9a77bcb066896e6a2</doaj_id><sourcerecordid>2355997990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddbCf-uiBVFR-VKsEBztbEHm-zcuJgJ0X993jZtGoRJ4_G772ZeXpV9ZqSLW0k_bCPSxohbCfb9VtKiCSteFKdUs6bjWy4evqgPqle5LwnpJRaPK9OGqo5FUSeVt_P6xF_1wPO19HVPqa6Hz2m1I-7eu5LOyHm2qc41DMOU0wQwm2dYZgCunqIAe0SINUZfy04Wswvq2ceQsZX63tW_fz86cfF183Vty-XF-dXG8s1mzeglYaOABCgFJwmXgonCPdgnafMSddKoRgh0HnNUXnZeu6ahjAUrAPZnFVvj7pTiNmsZmTDGs61llqTgrg8IlyEvZlSP0C6NRF687cR085Amnsb0IBoO2UtY0hVqzsNUna2I0IUu1AAK1of12lLN6CzOM7FiUeij3_G_trs4o2RhCqiRRF4vwqkWJzKsxn6bDEEGDEuh71bKphSShfou3-g_7-uPaJsijkn9PfLUGIOAbljmUNAzBqQQnvz8JB70l0imj9-Ybqk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355997990</pqid></control><display><type>article</type><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir</creator><contributor>Tanaka, Mark M.</contributor><creatorcontrib>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir ; Tanaka, Mark M.</creatorcontrib><description>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007046</identifier><identifier>PMID: 31951607</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Animals ; Bayesian analysis ; Biology ; Biology and Life Sciences ; Computational Biology - methods ; Computer and Information Sciences ; Computer simulation ; Confidence intervals ; Data analysis ; Datasets ; Divergence ; Empirical analysis ; Evolution, Molecular ; Genomics ; Graphical user interface ; Humans ; Medicine ; Medicine and Health Sciences ; Methods ; Pathogens ; Phylogenetics ; Phylogeny ; Research and Analysis Methods ; Researchers ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods ; Software ; Virus Diseases - virology ; Viruses - classification ; Viruses - genetics</subject><ispartof>PLoS computational biology, 2020-01, Vol.16 (1), p.e1007046-e1007046</ispartof><rights>2020 Miura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Miura et al 2020 Miura et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</citedby><cites>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</cites><orcidid>0000-0002-9918-8212 ; 0000-0001-7511-6284 ; 0000-0001-7360-409X ; 0000-0001-9881-2848 ; 0000-0003-0566-4597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31951607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tanaka, Mark M.</contributor><creatorcontrib>Miura, Sayaka</creatorcontrib><creatorcontrib>Tamura, Koichiro</creatorcontrib><creatorcontrib>Tao, Qiqing</creatorcontrib><creatorcontrib>Huuki, Louise A</creatorcontrib><creatorcontrib>Kosakovsky Pond, Sergei L</creatorcontrib><creatorcontrib>Priest, Jessica</creatorcontrib><creatorcontrib>Deng, Jiamin</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Divergence</subject><subject>Empirical analysis</subject><subject>Evolution, Molecular</subject><subject>Genomics</subject><subject>Graphical user interface</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Pathogens</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><subject>Virus Diseases - virology</subject><subject>Viruses - classification</subject><subject>Viruses - genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddbCf-uiBVFR-VKsEBztbEHm-zcuJgJ0X993jZtGoRJ4_G772ZeXpV9ZqSLW0k_bCPSxohbCfb9VtKiCSteFKdUs6bjWy4evqgPqle5LwnpJRaPK9OGqo5FUSeVt_P6xF_1wPO19HVPqa6Hz2m1I-7eu5LOyHm2qc41DMOU0wQwm2dYZgCunqIAe0SINUZfy04Wswvq2ceQsZX63tW_fz86cfF183Vty-XF-dXG8s1mzeglYaOABCgFJwmXgonCPdgnafMSddKoRgh0HnNUXnZeu6ahjAUrAPZnFVvj7pTiNmsZmTDGs61llqTgrg8IlyEvZlSP0C6NRF687cR085Amnsb0IBoO2UtY0hVqzsNUna2I0IUu1AAK1of12lLN6CzOM7FiUeij3_G_trs4o2RhCqiRRF4vwqkWJzKsxn6bDEEGDEuh71bKphSShfou3-g_7-uPaJsijkn9PfLUGIOAbljmUNAzBqQQnvz8JB70l0imj9-Ybqk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Miura, Sayaka</creator><creator>Tamura, Koichiro</creator><creator>Tao, Qiqing</creator><creator>Huuki, Louise A</creator><creator>Kosakovsky Pond, Sergei L</creator><creator>Priest, Jessica</creator><creator>Deng, Jiamin</creator><creator>Kumar, Sudhir</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9918-8212</orcidid><orcidid>https://orcid.org/0000-0001-7511-6284</orcidid><orcidid>https://orcid.org/0000-0001-7360-409X</orcidid><orcidid>https://orcid.org/0000-0001-9881-2848</orcidid><orcidid>https://orcid.org/0000-0003-0566-4597</orcidid></search><sort><creationdate>20200101</creationdate><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><author>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Divergence</topic><topic>Empirical analysis</topic><topic>Evolution, Molecular</topic><topic>Genomics</topic><topic>Graphical user interface</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Pathogens</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><topic>Virus Diseases - virology</topic><topic>Viruses - classification</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Sayaka</creatorcontrib><creatorcontrib>Tamura, Koichiro</creatorcontrib><creatorcontrib>Tao, Qiqing</creatorcontrib><creatorcontrib>Huuki, Louise A</creatorcontrib><creatorcontrib>Kosakovsky Pond, Sergei L</creatorcontrib><creatorcontrib>Priest, Jessica</creatorcontrib><creatorcontrib>Deng, Jiamin</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Sayaka</au><au>Tamura, Koichiro</au><au>Tao, Qiqing</au><au>Huuki, Louise A</au><au>Kosakovsky Pond, Sergei L</au><au>Priest, Jessica</au><au>Deng, Jiamin</au><au>Kumar, Sudhir</au><au>Tanaka, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for inferring timetrees from temporally sampled molecular sequences</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>e1007046</spage><epage>e1007046</epage><pages>e1007046-e1007046</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31951607</pmid><doi>10.1371/journal.pcbi.1007046</doi><orcidid>https://orcid.org/0000-0002-9918-8212</orcidid><orcidid>https://orcid.org/0000-0001-7511-6284</orcidid><orcidid>https://orcid.org/0000-0001-7360-409X</orcidid><orcidid>https://orcid.org/0000-0001-9881-2848</orcidid><orcidid>https://orcid.org/0000-0003-0566-4597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-01, Vol.16 (1), p.e1007046-e1007046
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2355997990
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accuracy
Algorithms
Animals
Bayesian analysis
Biology
Biology and Life Sciences
Computational Biology - methods
Computer and Information Sciences
Computer simulation
Confidence intervals
Data analysis
Datasets
Divergence
Empirical analysis
Evolution, Molecular
Genomics
Graphical user interface
Humans
Medicine
Medicine and Health Sciences
Methods
Pathogens
Phylogenetics
Phylogeny
Research and Analysis Methods
Researchers
Sequence Alignment - methods
Sequence Analysis, DNA - methods
Software
Virus Diseases - virology
Viruses - classification
Viruses - genetics
title A new method for inferring timetrees from temporally sampled molecular sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20inferring%20timetrees%20from%20temporally%20sampled%20molecular%20sequences&rft.jtitle=PLoS%20computational%20biology&rft.au=Miura,%20Sayaka&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=e1007046&rft.epage=e1007046&rft.pages=e1007046-e1007046&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007046&rft_dat=%3Cproquest_plos_%3E2355997990%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355997990&rft_id=info:pmid/31951607&rft_doaj_id=oai_doaj_org_article_a64b8cc22e1849b9a77bcb066896e6a2&rfr_iscdi=true