A new method for inferring timetrees from temporally sampled molecular sequences
Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, te...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-01, Vol.16 (1), p.e1007046-e1007046 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007046 |
---|---|
container_issue | 1 |
container_start_page | e1007046 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Miura, Sayaka Tamura, Koichiro Tao, Qiqing Huuki, Louise A Kosakovsky Pond, Sergei L Priest, Jessica Deng, Jiamin Kumar, Sudhir |
description | Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net. |
doi_str_mv | 10.1371/journal.pcbi.1007046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2355997990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a64b8cc22e1849b9a77bcb066896e6a2</doaj_id><sourcerecordid>2355997990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddbCf-uiBVFR-VKsEBztbEHm-zcuJgJ0X993jZtGoRJ4_G772ZeXpV9ZqSLW0k_bCPSxohbCfb9VtKiCSteFKdUs6bjWy4evqgPqle5LwnpJRaPK9OGqo5FUSeVt_P6xF_1wPO19HVPqa6Hz2m1I-7eu5LOyHm2qc41DMOU0wQwm2dYZgCunqIAe0SINUZfy04Wswvq2ceQsZX63tW_fz86cfF183Vty-XF-dXG8s1mzeglYaOABCgFJwmXgonCPdgnafMSddKoRgh0HnNUXnZeu6ahjAUrAPZnFVvj7pTiNmsZmTDGs61llqTgrg8IlyEvZlSP0C6NRF687cR085Amnsb0IBoO2UtY0hVqzsNUna2I0IUu1AAK1of12lLN6CzOM7FiUeij3_G_trs4o2RhCqiRRF4vwqkWJzKsxn6bDEEGDEuh71bKphSShfou3-g_7-uPaJsijkn9PfLUGIOAbljmUNAzBqQQnvz8JB70l0imj9-Ybqk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355997990</pqid></control><display><type>article</type><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir</creator><contributor>Tanaka, Mark M.</contributor><creatorcontrib>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir ; Tanaka, Mark M.</creatorcontrib><description>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007046</identifier><identifier>PMID: 31951607</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Animals ; Bayesian analysis ; Biology ; Biology and Life Sciences ; Computational Biology - methods ; Computer and Information Sciences ; Computer simulation ; Confidence intervals ; Data analysis ; Datasets ; Divergence ; Empirical analysis ; Evolution, Molecular ; Genomics ; Graphical user interface ; Humans ; Medicine ; Medicine and Health Sciences ; Methods ; Pathogens ; Phylogenetics ; Phylogeny ; Research and Analysis Methods ; Researchers ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods ; Software ; Virus Diseases - virology ; Viruses - classification ; Viruses - genetics</subject><ispartof>PLoS computational biology, 2020-01, Vol.16 (1), p.e1007046-e1007046</ispartof><rights>2020 Miura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Miura et al 2020 Miura et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</citedby><cites>FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</cites><orcidid>0000-0002-9918-8212 ; 0000-0001-7511-6284 ; 0000-0001-7360-409X ; 0000-0001-9881-2848 ; 0000-0003-0566-4597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31951607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tanaka, Mark M.</contributor><creatorcontrib>Miura, Sayaka</creatorcontrib><creatorcontrib>Tamura, Koichiro</creatorcontrib><creatorcontrib>Tao, Qiqing</creatorcontrib><creatorcontrib>Huuki, Louise A</creatorcontrib><creatorcontrib>Kosakovsky Pond, Sergei L</creatorcontrib><creatorcontrib>Priest, Jessica</creatorcontrib><creatorcontrib>Deng, Jiamin</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Divergence</subject><subject>Empirical analysis</subject><subject>Evolution, Molecular</subject><subject>Genomics</subject><subject>Graphical user interface</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Pathogens</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><subject>Virus Diseases - virology</subject><subject>Viruses - classification</subject><subject>Viruses - genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddbCf-uiBVFR-VKsEBztbEHm-zcuJgJ0X993jZtGoRJ4_G772ZeXpV9ZqSLW0k_bCPSxohbCfb9VtKiCSteFKdUs6bjWy4evqgPqle5LwnpJRaPK9OGqo5FUSeVt_P6xF_1wPO19HVPqa6Hz2m1I-7eu5LOyHm2qc41DMOU0wQwm2dYZgCunqIAe0SINUZfy04Wswvq2ceQsZX63tW_fz86cfF183Vty-XF-dXG8s1mzeglYaOABCgFJwmXgonCPdgnafMSddKoRgh0HnNUXnZeu6ahjAUrAPZnFVvj7pTiNmsZmTDGs61llqTgrg8IlyEvZlSP0C6NRF687cR085Amnsb0IBoO2UtY0hVqzsNUna2I0IUu1AAK1of12lLN6CzOM7FiUeij3_G_trs4o2RhCqiRRF4vwqkWJzKsxn6bDEEGDEuh71bKphSShfou3-g_7-uPaJsijkn9PfLUGIOAbljmUNAzBqQQnvz8JB70l0imj9-Ybqk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Miura, Sayaka</creator><creator>Tamura, Koichiro</creator><creator>Tao, Qiqing</creator><creator>Huuki, Louise A</creator><creator>Kosakovsky Pond, Sergei L</creator><creator>Priest, Jessica</creator><creator>Deng, Jiamin</creator><creator>Kumar, Sudhir</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9918-8212</orcidid><orcidid>https://orcid.org/0000-0001-7511-6284</orcidid><orcidid>https://orcid.org/0000-0001-7360-409X</orcidid><orcidid>https://orcid.org/0000-0001-9881-2848</orcidid><orcidid>https://orcid.org/0000-0003-0566-4597</orcidid></search><sort><creationdate>20200101</creationdate><title>A new method for inferring timetrees from temporally sampled molecular sequences</title><author>Miura, Sayaka ; Tamura, Koichiro ; Tao, Qiqing ; Huuki, Louise A ; Kosakovsky Pond, Sergei L ; Priest, Jessica ; Deng, Jiamin ; Kumar, Sudhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a989ab0aa0a11ad90f76d605facdf12d7d4768200abf95e8f74f5d3302e62ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Divergence</topic><topic>Empirical analysis</topic><topic>Evolution, Molecular</topic><topic>Genomics</topic><topic>Graphical user interface</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Pathogens</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><topic>Virus Diseases - virology</topic><topic>Viruses - classification</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Sayaka</creatorcontrib><creatorcontrib>Tamura, Koichiro</creatorcontrib><creatorcontrib>Tao, Qiqing</creatorcontrib><creatorcontrib>Huuki, Louise A</creatorcontrib><creatorcontrib>Kosakovsky Pond, Sergei L</creatorcontrib><creatorcontrib>Priest, Jessica</creatorcontrib><creatorcontrib>Deng, Jiamin</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Sayaka</au><au>Tamura, Koichiro</au><au>Tao, Qiqing</au><au>Huuki, Louise A</au><au>Kosakovsky Pond, Sergei L</au><au>Priest, Jessica</au><au>Deng, Jiamin</au><au>Kumar, Sudhir</au><au>Tanaka, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for inferring timetrees from temporally sampled molecular sequences</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>e1007046</spage><epage>e1007046</epage><pages>e1007046-e1007046</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31951607</pmid><doi>10.1371/journal.pcbi.1007046</doi><orcidid>https://orcid.org/0000-0002-9918-8212</orcidid><orcidid>https://orcid.org/0000-0001-7511-6284</orcidid><orcidid>https://orcid.org/0000-0001-7360-409X</orcidid><orcidid>https://orcid.org/0000-0001-9881-2848</orcidid><orcidid>https://orcid.org/0000-0003-0566-4597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-01, Vol.16 (1), p.e1007046-e1007046 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2355997990 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accuracy Algorithms Animals Bayesian analysis Biology Biology and Life Sciences Computational Biology - methods Computer and Information Sciences Computer simulation Confidence intervals Data analysis Datasets Divergence Empirical analysis Evolution, Molecular Genomics Graphical user interface Humans Medicine Medicine and Health Sciences Methods Pathogens Phylogenetics Phylogeny Research and Analysis Methods Researchers Sequence Alignment - methods Sequence Analysis, DNA - methods Software Virus Diseases - virology Viruses - classification Viruses - genetics |
title | A new method for inferring timetrees from temporally sampled molecular sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20inferring%20timetrees%20from%20temporally%20sampled%20molecular%20sequences&rft.jtitle=PLoS%20computational%20biology&rft.au=Miura,%20Sayaka&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=e1007046&rft.epage=e1007046&rft.pages=e1007046-e1007046&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007046&rft_dat=%3Cproquest_plos_%3E2355997990%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355997990&rft_id=info:pmid/31951607&rft_doaj_id=oai_doaj_org_article_a64b8cc22e1849b9a77bcb066896e6a2&rfr_iscdi=true |