Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response
It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifti...
Gespeichert in:
Veröffentlicht in: | PloS one 2020, Vol.15 (2), p.e0228937-e0228937 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0228937 |
---|---|
container_issue | 2 |
container_start_page | e0228937 |
container_title | PloS one |
container_volume | 15 |
creator | Orekhova, Elena V Prokofyev, Andrey O Nikolaeva, Anastasia Yu Schneiderman, Justin F Stroganova, Tatiana A |
description | It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders. |
doi_str_mv | 10.1371/journal.pone.0228937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2354740688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c9eb92c4fcc4764ab5386612f7446f0</doaj_id><sourcerecordid>2355954291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-b0d9ce92281f6249176dcfe28ba36c2db7d8d73a629febd3c5c956e8304726d63</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwDxBY4sJli79iJxekquKjUiUucLYce5x6lY2D7Szsgf-Os7utuoiTR-PnfT0znqp6TfAlYZJ8WIc5jnq4nMIIl5jSpmXySXVOWkZXgmL29FF8Vr1IaY1xzRohnldnjJZQNOS8-nNlrc9-CwicA5NRcMiEMUedMtKjRVsYgvF5h9Lc95ByQvkOUAwDLGjKMYw9gt8F0TnEHbJxMfNj4acpQko-jAu59WnWA-r1ZqNRyZeyE7ysnjk9JHh1PC-qH58_fb_-urr99uXm-up2ZWrB86rDtjXQlh6JE5S3RAprHNCm00wYajtpGyuZFrR10FlmatPWAhqGuaTCCnZRvT34TkNI6ji5pCirueRYNE0hbg6EDXqtpug3Ou5U0F7tEyH2SsfszQCKmxa6lhrujOFScN3tx0qok5wLh4vX6uCVfsE0dydu_TypkupnlUDRljSSFv7jsbq524A1sIx_OJGd3oz-TvVhqyQmTWmxGLw_GsTwcy6fpDY-GRgGPUKY933Wbc3LcwV99w_6_2nwA2ViSCmCeyiGYLVs371KLdunjttXZG8eN_Igul839hcPE9vG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354740688</pqid></control><display><type>article</type><title>Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Orekhova, Elena V ; Prokofyev, Andrey O ; Nikolaeva, Anastasia Yu ; Schneiderman, Justin F ; Stroganova, Tatiana A</creator><contributor>Rennó‐Costa, César</contributor><creatorcontrib>Orekhova, Elena V ; Prokofyev, Andrey O ; Nikolaeva, Anastasia Yu ; Schneiderman, Justin F ; Stroganova, Tatiana A ; Rennó‐Costa, César</creatorcontrib><description>It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0228937</identifier><identifier>PMID: 32053681</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Attenuation ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - physiology ; Education ; Excitation ; Female ; Gamma Rhythm - physiology ; Humans ; Hypotheses ; Magnetic Resonance Imaging ; Magnetoencephalography ; Male ; Medicine and Health Sciences ; Motion detection ; Neurons - physiology ; Neurosciences ; Neurovetenskaper ; Oscillations ; Photic Stimulation - methods ; Physical Sciences ; Physiology ; Research and Analysis Methods ; Social Sciences ; Transition points ; Velocity ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>PloS one, 2020, Vol.15 (2), p.e0228937-e0228937</ispartof><rights>2020 Orekhova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Orekhova et al 2020 Orekhova et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-b0d9ce92281f6249176dcfe28ba36c2db7d8d73a629febd3c5c956e8304726d63</citedby><cites>FETCH-LOGICAL-c564t-b0d9ce92281f6249176dcfe28ba36c2db7d8d73a629febd3c5c956e8304726d63</cites><orcidid>0000-0003-0950-1613 ; 0000-0002-4441-2360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018047/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018047/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,4010,23847,27904,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32053681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/291872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Rennó‐Costa, César</contributor><creatorcontrib>Orekhova, Elena V</creatorcontrib><creatorcontrib>Prokofyev, Andrey O</creatorcontrib><creatorcontrib>Nikolaeva, Anastasia Yu</creatorcontrib><creatorcontrib>Schneiderman, Justin F</creatorcontrib><creatorcontrib>Stroganova, Tatiana A</creatorcontrib><title>Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Attenuation</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Education</subject><subject>Excitation</subject><subject>Female</subject><subject>Gamma Rhythm - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Motion detection</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurovetenskaper</subject><subject>Oscillations</subject><subject>Photic Stimulation - methods</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Transition points</subject><subject>Velocity</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwDxBY4sJli79iJxekquKjUiUucLYce5x6lY2D7Szsgf-Os7utuoiTR-PnfT0znqp6TfAlYZJ8WIc5jnq4nMIIl5jSpmXySXVOWkZXgmL29FF8Vr1IaY1xzRohnldnjJZQNOS8-nNlrc9-CwicA5NRcMiEMUedMtKjRVsYgvF5h9Lc95ByQvkOUAwDLGjKMYw9gt8F0TnEHbJxMfNj4acpQko-jAu59WnWA-r1ZqNRyZeyE7ysnjk9JHh1PC-qH58_fb_-urr99uXm-up2ZWrB86rDtjXQlh6JE5S3RAprHNCm00wYajtpGyuZFrR10FlmatPWAhqGuaTCCnZRvT34TkNI6ji5pCirueRYNE0hbg6EDXqtpug3Ou5U0F7tEyH2SsfszQCKmxa6lhrujOFScN3tx0qok5wLh4vX6uCVfsE0dydu_TypkupnlUDRljSSFv7jsbq524A1sIx_OJGd3oz-TvVhqyQmTWmxGLw_GsTwcy6fpDY-GRgGPUKY933Wbc3LcwV99w_6_2nwA2ViSCmCeyiGYLVs371KLdunjttXZG8eN_Igul839hcPE9vG</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Orekhova, Elena V</creator><creator>Prokofyev, Andrey O</creator><creator>Nikolaeva, Anastasia Yu</creator><creator>Schneiderman, Justin F</creator><creator>Stroganova, Tatiana A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0950-1613</orcidid><orcidid>https://orcid.org/0000-0002-4441-2360</orcidid></search><sort><creationdate>2020</creationdate><title>Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response</title><author>Orekhova, Elena V ; Prokofyev, Andrey O ; Nikolaeva, Anastasia Yu ; Schneiderman, Justin F ; Stroganova, Tatiana A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-b0d9ce92281f6249176dcfe28ba36c2db7d8d73a629febd3c5c956e8304726d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Attenuation</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Education</topic><topic>Excitation</topic><topic>Female</topic><topic>Gamma Rhythm - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Motion detection</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurovetenskaper</topic><topic>Oscillations</topic><topic>Photic Stimulation - methods</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Transition points</topic><topic>Velocity</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orekhova, Elena V</creatorcontrib><creatorcontrib>Prokofyev, Andrey O</creatorcontrib><creatorcontrib>Nikolaeva, Anastasia Yu</creatorcontrib><creatorcontrib>Schneiderman, Justin F</creatorcontrib><creatorcontrib>Stroganova, Tatiana A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orekhova, Elena V</au><au>Prokofyev, Andrey O</au><au>Nikolaeva, Anastasia Yu</au><au>Schneiderman, Justin F</au><au>Stroganova, Tatiana A</au><au>Rennó‐Costa, César</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>e0228937</spage><epage>e0228937</epage><pages>e0228937-e0228937</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It is commonly acknowledged that gamma-band oscillations arise from interplay between neural excitation and inhibition; however, the neural mechanisms controlling the power of stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A moderate increase in velocity of drifting gratings results in GR power enhancement, while increasing the velocity beyond some 'transition point' leads to GR power attenuation. We tested two alternative explanations for this nonlinear input-output dependency in the GR power. First, the GR power can be maximal at the preferable velocity/temporal frequency of motion-sensitive V1 neurons. This 'velocity tuning' hypothesis predicts that lowering contrast either will not affect the transition point or shift it to a lower velocity. Second, the GR power attenuation at high velocities of visual motion can be caused by changes in excitation/inhibition balance with increasing excitatory drive. Since contrast and velocity both add to excitatory drive, this 'excitatory drive' hypothesis predicts that the 'transition point' for low-contrast gratings would be reached at a higher velocity, as compared to high-contrast gratings. To test these alternatives, we recorded magnetoencephalography during presentation of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that lowering contrast led to a highly reliable shift of the GR suppression transition point to higher velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity were found in the alpha-beta range. The results have implications for understanding the mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed excitation/inhibition balance in brain disorders.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32053681</pmid><doi>10.1371/journal.pone.0228937</doi><orcidid>https://orcid.org/0000-0003-0950-1613</orcidid><orcidid>https://orcid.org/0000-0002-4441-2360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020, Vol.15 (2), p.e0228937-e0228937 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2354740688 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adolescent Adult Attenuation Biology and Life Sciences Biomarkers Brain Brain - physiology Education Excitation Female Gamma Rhythm - physiology Humans Hypotheses Magnetic Resonance Imaging Magnetoencephalography Male Medicine and Health Sciences Motion detection Neurons - physiology Neurosciences Neurovetenskaper Oscillations Photic Stimulation - methods Physical Sciences Physiology Research and Analysis Methods Social Sciences Transition points Velocity Visual Cortex - physiology Visual Perception - physiology |
title | Additive effect of contrast and velocity suggests the role of strong excitatory drive in suppression of visual gamma response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20effect%20of%20contrast%20and%20velocity%20suggests%20the%20role%20of%20strong%20excitatory%20drive%20in%20suppression%20of%20visual%20gamma%20response&rft.jtitle=PloS%20one&rft.au=Orekhova,%20Elena%20V&rft.date=2020&rft.volume=15&rft.issue=2&rft.spage=e0228937&rft.epage=e0228937&rft.pages=e0228937-e0228937&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0228937&rft_dat=%3Cproquest_plos_%3E2355954291%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354740688&rft_id=info:pmid/32053681&rft_doaj_id=oai_doaj_org_article_4c9eb92c4fcc4764ab5386612f7446f0&rfr_iscdi=true |