Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava
Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-01, Vol.15 (1), p.e0227199-e0227199 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0227199 |
---|---|
container_issue | 1 |
container_start_page | e0227199 |
container_title | PloS one |
container_volume | 15 |
creator | Odipio, John Getu, Beyene Chauhan, R D Alicai, Titus Bart, Rebecca Nusinow, Dmitri A Taylor, Nigel J |
description | Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro in all ten transgenic plant lines recovered, causing eight lines to die within 21 days of culture. The two surviving transgenic plant lines flowered early and profusely commencing as soon as 14 days after establishment in soil in the greenhouse. Both transgenic lines sustained early flowering across the vegetative propagation cycle, with first flowering recorded 30-50 days after planting stakes compared to 90 days for non-transgenic controls. Transgenic plant lines completed five flowering cycles within 200 days in the greenhouse as opposed to twice flowering event in the controls. Constitutive overexpression of MeFT1 generated fully mature male and female flowers and produced a bushy phenotype due to significantly increased flowering-induced branching. Flower induction by MeFT1 overexpression was not graft-transmissible and negatively affected storage root development. Accelerated flowering in transgenic plants was associated with significantly increased mRNA levels of MeFT1 and the three floral meristem identity genes MeAP1, MeLFY and MeSOC1 in shoot apical tissues. These findings imply that MeFT1 encodes flower induction and triggers flowering by recruiting downstream floral meristem identity genes. |
doi_str_mv | 10.1371/journal.pone.0227199 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2348096519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612543168</galeid><doaj_id>oai_doaj_org_article_d263fdadef1747d084ea1d9b2d0a58ad</doaj_id><sourcerecordid>A612543168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1d68d2279236f6ddf6a0766a83d5d079e1423d2ef8da549fbac18c8d3129a02d3</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYqPwBggiISG4aPGfxIlvJk3VOioVKm0dXFpn8UnnkdrFTsb2NjwLT4a7ZVOLdoFy4cjnd77j89knSV5TMqK8oJ8uXectNKO1szgijBVUyifJPpWcDQUj_OnW_17yIoRLQnJeCvE82eORJZKK_cQuPNiwRGuq1F2hx-u1xxCMs6mrU7TaxZjrQjqZzb8fnUy_Hqez-fjsNF0MG_MD0xjF9AtOFvTP77V3uqswpAi-uUnrxv1Cb-wyNTatIAS4gpfJsxqagK_6dZCcTY4W48_D2fx4Oj6cDSshWTukWpQ6tiQZF7XQuhZACiGg5DrXpJBIM8Y1w7rUkGeyPoeKllWpOWUSCNN8kLy90103LqjeqqAYz0oiRR6NGSTTO0I7uFRrb1bgb5QDo243nF8q8K2pGlSaCV5r0FjTIis0KTMEquU50wTyEjbVDvpq3fkKdYW29dDsiO5GrLlQS3elhCxFkRdR4EMv4N3PDkOrViZU2DRgMZp_e27GeS436Lt_0Me766klxAaMrV2sW21E1aGgLM84FWWkRo9Q8dO4MlV8V7WJ-zsJH3cSItPidbuELgQ1PT35f3b-bZd9v8VeIDTtRXBN18Z3GHbB7A6svAvBY_1gMiVqMxb3bqjNWKh-LGLam-0Leki6nwP-F62-CIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348096519</pqid></control><display><type>article</type><title>Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Odipio, John ; Getu, Beyene ; Chauhan, R D ; Alicai, Titus ; Bart, Rebecca ; Nusinow, Dmitri A ; Taylor, Nigel J</creator><creatorcontrib>Odipio, John ; Getu, Beyene ; Chauhan, R D ; Alicai, Titus ; Bart, Rebecca ; Nusinow, Dmitri A ; Taylor, Nigel J</creatorcontrib><description>Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro in all ten transgenic plant lines recovered, causing eight lines to die within 21 days of culture. The two surviving transgenic plant lines flowered early and profusely commencing as soon as 14 days after establishment in soil in the greenhouse. Both transgenic lines sustained early flowering across the vegetative propagation cycle, with first flowering recorded 30-50 days after planting stakes compared to 90 days for non-transgenic controls. Transgenic plant lines completed five flowering cycles within 200 days in the greenhouse as opposed to twice flowering event in the controls. Constitutive overexpression of MeFT1 generated fully mature male and female flowers and produced a bushy phenotype due to significantly increased flowering-induced branching. Flower induction by MeFT1 overexpression was not graft-transmissible and negatively affected storage root development. Accelerated flowering in transgenic plants was associated with significantly increased mRNA levels of MeFT1 and the three floral meristem identity genes MeAP1, MeLFY and MeSOC1 in shoot apical tissues. These findings imply that MeFT1 encodes flower induction and triggers flowering by recruiting downstream floral meristem identity genes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0227199</identifier><identifier>PMID: 31990916</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Biology and Life Sciences ; Breeding ; Cassava ; Citrus ; Cultivars ; Embryos ; Engineering and Technology ; Enzymes ; Flowering ; FLOWERING LOCUS T gene ; Flowers ; Flowers - genetics ; Flowers - growth & development ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genetic engineering ; Genetically modified plants ; Genomics ; Greenhouses ; Homology ; Humidity ; Loci ; Manihot - genetics ; Manihot - growth & development ; Meristems ; Messenger RNA ; mRNA ; Neomycin ; Paromomycin ; Phenotypes ; Plant breeding ; Plant propagation ; Plant sciences ; Plants (botany) ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth & development ; Plasmids ; Propagation ; Proteins ; Research and Analysis Methods ; RNA ; Root development ; Transgenic plants ; Up-Regulation</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0227199-e0227199</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Odipio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Odipio et al 2020 Odipio et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1d68d2279236f6ddf6a0766a83d5d079e1423d2ef8da549fbac18c8d3129a02d3</citedby><cites>FETCH-LOGICAL-c692t-1d68d2279236f6ddf6a0766a83d5d079e1423d2ef8da549fbac18c8d3129a02d3</cites><orcidid>0000-0003-1378-3481 ; 0000-0002-5153-0023 ; 0000-0002-0497-1723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31990916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odipio, John</creatorcontrib><creatorcontrib>Getu, Beyene</creatorcontrib><creatorcontrib>Chauhan, R D</creatorcontrib><creatorcontrib>Alicai, Titus</creatorcontrib><creatorcontrib>Bart, Rebecca</creatorcontrib><creatorcontrib>Nusinow, Dmitri A</creatorcontrib><creatorcontrib>Taylor, Nigel J</creatorcontrib><title>Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro in all ten transgenic plant lines recovered, causing eight lines to die within 21 days of culture. The two surviving transgenic plant lines flowered early and profusely commencing as soon as 14 days after establishment in soil in the greenhouse. Both transgenic lines sustained early flowering across the vegetative propagation cycle, with first flowering recorded 30-50 days after planting stakes compared to 90 days for non-transgenic controls. Transgenic plant lines completed five flowering cycles within 200 days in the greenhouse as opposed to twice flowering event in the controls. Constitutive overexpression of MeFT1 generated fully mature male and female flowers and produced a bushy phenotype due to significantly increased flowering-induced branching. Flower induction by MeFT1 overexpression was not graft-transmissible and negatively affected storage root development. Accelerated flowering in transgenic plants was associated with significantly increased mRNA levels of MeFT1 and the three floral meristem identity genes MeAP1, MeLFY and MeSOC1 in shoot apical tissues. These findings imply that MeFT1 encodes flower induction and triggers flowering by recruiting downstream floral meristem identity genes.</description><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Cassava</subject><subject>Citrus</subject><subject>Cultivars</subject><subject>Embryos</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Flowering</subject><subject>FLOWERING LOCUS T gene</subject><subject>Flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetically modified plants</subject><subject>Genomics</subject><subject>Greenhouses</subject><subject>Homology</subject><subject>Humidity</subject><subject>Loci</subject><subject>Manihot - genetics</subject><subject>Manihot - growth & development</subject><subject>Meristems</subject><subject>Messenger RNA</subject><subject>mRNA</subject><subject>Neomycin</subject><subject>Paromomycin</subject><subject>Phenotypes</subject><subject>Plant breeding</subject><subject>Plant propagation</subject><subject>Plant sciences</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth & development</subject><subject>Plasmids</subject><subject>Propagation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>RNA</subject><subject>Root development</subject><subject>Transgenic plants</subject><subject>Up-Regulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYqPwBggiISG4aPGfxIlvJk3VOioVKm0dXFpn8UnnkdrFTsb2NjwLT4a7ZVOLdoFy4cjnd77j89knSV5TMqK8oJ8uXectNKO1szgijBVUyifJPpWcDQUj_OnW_17yIoRLQnJeCvE82eORJZKK_cQuPNiwRGuq1F2hx-u1xxCMs6mrU7TaxZjrQjqZzb8fnUy_Hqez-fjsNF0MG_MD0xjF9AtOFvTP77V3uqswpAi-uUnrxv1Cb-wyNTatIAS4gpfJsxqagK_6dZCcTY4W48_D2fx4Oj6cDSshWTukWpQ6tiQZF7XQuhZACiGg5DrXpJBIM8Y1w7rUkGeyPoeKllWpOWUSCNN8kLy90103LqjeqqAYz0oiRR6NGSTTO0I7uFRrb1bgb5QDo243nF8q8K2pGlSaCV5r0FjTIis0KTMEquU50wTyEjbVDvpq3fkKdYW29dDsiO5GrLlQS3elhCxFkRdR4EMv4N3PDkOrViZU2DRgMZp_e27GeS436Lt_0Me766klxAaMrV2sW21E1aGgLM84FWWkRo9Q8dO4MlV8V7WJ-zsJH3cSItPidbuELgQ1PT35f3b-bZd9v8VeIDTtRXBN18Z3GHbB7A6svAvBY_1gMiVqMxb3bqjNWKh-LGLam-0Leki6nwP-F62-CIU</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Odipio, John</creator><creator>Getu, Beyene</creator><creator>Chauhan, R D</creator><creator>Alicai, Titus</creator><creator>Bart, Rebecca</creator><creator>Nusinow, Dmitri A</creator><creator>Taylor, Nigel J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1378-3481</orcidid><orcidid>https://orcid.org/0000-0002-5153-0023</orcidid><orcidid>https://orcid.org/0000-0002-0497-1723</orcidid></search><sort><creationdate>20200128</creationdate><title>Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava</title><author>Odipio, John ; Getu, Beyene ; Chauhan, R D ; Alicai, Titus ; Bart, Rebecca ; Nusinow, Dmitri A ; Taylor, Nigel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1d68d2279236f6ddf6a0766a83d5d079e1423d2ef8da549fbac18c8d3129a02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Cassava</topic><topic>Citrus</topic><topic>Cultivars</topic><topic>Embryos</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Flowering</topic><topic>FLOWERING LOCUS T gene</topic><topic>Flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetically modified plants</topic><topic>Genomics</topic><topic>Greenhouses</topic><topic>Homology</topic><topic>Humidity</topic><topic>Loci</topic><topic>Manihot - genetics</topic><topic>Manihot - growth & development</topic><topic>Meristems</topic><topic>Messenger RNA</topic><topic>mRNA</topic><topic>Neomycin</topic><topic>Paromomycin</topic><topic>Phenotypes</topic><topic>Plant breeding</topic><topic>Plant propagation</topic><topic>Plant sciences</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth & development</topic><topic>Plasmids</topic><topic>Propagation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>RNA</topic><topic>Root development</topic><topic>Transgenic plants</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odipio, John</creatorcontrib><creatorcontrib>Getu, Beyene</creatorcontrib><creatorcontrib>Chauhan, R D</creatorcontrib><creatorcontrib>Alicai, Titus</creatorcontrib><creatorcontrib>Bart, Rebecca</creatorcontrib><creatorcontrib>Nusinow, Dmitri A</creatorcontrib><creatorcontrib>Taylor, Nigel J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odipio, John</au><au>Getu, Beyene</au><au>Chauhan, R D</au><au>Alicai, Titus</au><au>Bart, Rebecca</au><au>Nusinow, Dmitri A</au><au>Taylor, Nigel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0227199</spage><epage>e0227199</epage><pages>e0227199-e0227199</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Endogenous FLOWERING LOCUS T homolog MeFT1 was transgenically overexpressed under control of a strong constitutive promoter in cassava cultivar 60444 to determine its role in regulation of flowering and as a potential tool to accelerate cassava breeding. Early profuse flowering was recorded in-vitro in all ten transgenic plant lines recovered, causing eight lines to die within 21 days of culture. The two surviving transgenic plant lines flowered early and profusely commencing as soon as 14 days after establishment in soil in the greenhouse. Both transgenic lines sustained early flowering across the vegetative propagation cycle, with first flowering recorded 30-50 days after planting stakes compared to 90 days for non-transgenic controls. Transgenic plant lines completed five flowering cycles within 200 days in the greenhouse as opposed to twice flowering event in the controls. Constitutive overexpression of MeFT1 generated fully mature male and female flowers and produced a bushy phenotype due to significantly increased flowering-induced branching. Flower induction by MeFT1 overexpression was not graft-transmissible and negatively affected storage root development. Accelerated flowering in transgenic plants was associated with significantly increased mRNA levels of MeFT1 and the three floral meristem identity genes MeAP1, MeLFY and MeSOC1 in shoot apical tissues. These findings imply that MeFT1 encodes flower induction and triggers flowering by recruiting downstream floral meristem identity genes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31990916</pmid><doi>10.1371/journal.pone.0227199</doi><tpages>e0227199</tpages><orcidid>https://orcid.org/0000-0003-1378-3481</orcidid><orcidid>https://orcid.org/0000-0002-5153-0023</orcidid><orcidid>https://orcid.org/0000-0002-0497-1723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-01, Vol.15 (1), p.e0227199-e0227199 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2348096519 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Arabidopsis - genetics Arabidopsis Proteins - genetics Biology and Life Sciences Breeding Cassava Citrus Cultivars Embryos Engineering and Technology Enzymes Flowering FLOWERING LOCUS T gene Flowers Flowers - genetics Flowers - growth & development Gene expression Gene Expression Regulation, Plant Genes Genetic engineering Genetically modified plants Genomics Greenhouses Homology Humidity Loci Manihot - genetics Manihot - growth & development Meristems Messenger RNA mRNA Neomycin Paromomycin Phenotypes Plant breeding Plant propagation Plant sciences Plants (botany) Plants, Genetically Modified - genetics Plants, Genetically Modified - growth & development Plasmids Propagation Proteins Research and Analysis Methods RNA Root development Transgenic plants Up-Regulation |
title | Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transgenic%20overexpression%20of%20endogenous%20FLOWERING%20LOCUS%20T-like%20gene%20MeFT1%C2%A0produces%20early%20flowering%20in%20cassava&rft.jtitle=PloS%20one&rft.au=Odipio,%20John&rft.date=2020-01-28&rft.volume=15&rft.issue=1&rft.spage=e0227199&rft.epage=e0227199&rft.pages=e0227199-e0227199&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0227199&rft_dat=%3Cgale_plos_%3EA612543168%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348096519&rft_id=info:pmid/31990916&rft_galeid=A612543168&rft_doaj_id=oai_doaj_org_article_d263fdadef1747d084ea1d9b2d0a58ad&rfr_iscdi=true |