A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model

To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-01, Vol.15 (1), p.e0227901-e0227901
Hauptverfasser: Qiu, Dongwei, Xu, Hao, Luo, Dean, Ye, Qing, Li, Shaofu, Wang, Tong, Ding, Keliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0227901
container_issue 1
container_start_page e0227901
container_title PloS one
container_volume 15
creator Qiu, Dongwei
Xu, Hao
Luo, Dean
Ye, Qing
Li, Shaofu
Wang, Tong
Ding, Keliang
description To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.
doi_str_mv 10.1371/journal.pone.0227901
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2343022017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611897783</galeid><doaj_id>oai_doaj_org_article_7cc33abe3da04cb4a3c06d6098fa3e24</doaj_id><sourcerecordid>A611897783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHiZPcIFUTH5UmTeLr1jq1j1sPJ87shLH9ehzaTS3aBcqFI-c5r_2-OSfLnjM6Z7xi7y78GDpw8953OKd5XjWUPciOWcPzmcgpf7j3fpQ9ifGC0pLXQjzOjjhrBGsoP86uFySA7a5gwECU74bgHfH9YFt7A4P1HdEY7boj0PfBg9oQ4wMBG3ofhkhWEFGTRAGJ6MzMhzV09sZ2a2IQhjEgaaEnHY4BXFqGKx9-ktZrdE-zRwZcxGe79ST7_vHDt9PPs7PzT8vTxdlMiSYfZjqvgPFC11ibmqlGIRpoalXmoBQr6-SOl9jk3IiVqE1pqCjLKtdVjbnWWvCT7OVWt3c-yl1qUea84Ck1yqpELLeE9nAh-2BbCNfSg5V_N5InCWGwyqGslOIcVsg10EKtCuCKCi1oUxvgmBdJ6_3utHHVolaYEgV3IHr4pbMbufa_pGiqglWTwJudQPCXI8ZBtjYqdA469OP23mXyTWlCX_2D3u9uR60hGbCd8elcNYnKhWCsbqqq5oma30OlR2NrU1-gsWn_oODtQcHUO_h7WMMYo1x-_fL_7PmPQ_b1HrtBcMMmejdOvRgPwWILquBjDGjuQmZUThNym4acJkTuJiSVvdj_QXdFtyPB_wA6LQ3D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343022017</pqid></control><display><type>article</type><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang</creator><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang ; Aschonitis, Vassilis G.</creatorcontrib><description>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0227901</identifier><identifier>PMID: 31961903</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Airport construction ; Airports ; Analysis ; Artificial neural networks ; Beijing ; Biology and Life Sciences ; Civil engineering ; Computer and Information Sciences ; Construction ; Design optimization ; Design parameters ; Diameters ; Drainage control ; Drainage design ; Drainage systems ; Earth Sciences ; Efficiency ; Engineering and Technology ; Feature maps ; Floods ; Genetic algorithms ; Green buildings ; Green infrastructure ; Green roofs ; Informatics ; Infrastructure (Economics) ; Inspection ; Mathematical models ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Nuclear energy ; Nuclear power plants ; Optimization ; Overflow ; Pipes ; Rain ; Rain water ; Rainfall ; Rainstorms ; Rainwater ; Research and Analysis Methods ; Runoff ; Stormwater ; Sustainability ; Sustainable design ; Water Movements</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0227901-e0227901</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Qiu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Qiu et al 2020 Qiu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</citedby><cites>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</cites><orcidid>0000-0002-1665-7440 ; 0000-0002-1313-7044 ; 0000-0002-7431-3814 ; 0000-0002-9825-2075 ; 0000-0002-0633-2298 ; 0000-0001-9981-3324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31961903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Qiu, Dongwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Luo, Dean</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Li, Shaofu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Ding, Keliang</creatorcontrib><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</description><subject>Airport construction</subject><subject>Airports</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Beijing</subject><subject>Biology and Life Sciences</subject><subject>Civil engineering</subject><subject>Computer and Information Sciences</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Diameters</subject><subject>Drainage control</subject><subject>Drainage design</subject><subject>Drainage systems</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Engineering and Technology</subject><subject>Feature maps</subject><subject>Floods</subject><subject>Genetic algorithms</subject><subject>Green buildings</subject><subject>Green infrastructure</subject><subject>Green roofs</subject><subject>Informatics</subject><subject>Infrastructure (Economics)</subject><subject>Inspection</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Overflow</subject><subject>Pipes</subject><subject>Rain</subject><subject>Rain water</subject><subject>Rainfall</subject><subject>Rainstorms</subject><subject>Rainwater</subject><subject>Research and Analysis Methods</subject><subject>Runoff</subject><subject>Stormwater</subject><subject>Sustainability</subject><subject>Sustainable design</subject><subject>Water Movements</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHiZPcIFUTH5UmTeLr1jq1j1sPJ87shLH9ehzaTS3aBcqFI-c5r_2-OSfLnjM6Z7xi7y78GDpw8953OKd5XjWUPciOWcPzmcgpf7j3fpQ9ifGC0pLXQjzOjjhrBGsoP86uFySA7a5gwECU74bgHfH9YFt7A4P1HdEY7boj0PfBg9oQ4wMBG3ofhkhWEFGTRAGJ6MzMhzV09sZ2a2IQhjEgaaEnHY4BXFqGKx9-ktZrdE-zRwZcxGe79ST7_vHDt9PPs7PzT8vTxdlMiSYfZjqvgPFC11ibmqlGIRpoalXmoBQr6-SOl9jk3IiVqE1pqCjLKtdVjbnWWvCT7OVWt3c-yl1qUea84Ck1yqpELLeE9nAh-2BbCNfSg5V_N5InCWGwyqGslOIcVsg10EKtCuCKCi1oUxvgmBdJ6_3utHHVolaYEgV3IHr4pbMbufa_pGiqglWTwJudQPCXI8ZBtjYqdA469OP23mXyTWlCX_2D3u9uR60hGbCd8elcNYnKhWCsbqqq5oma30OlR2NrU1-gsWn_oODtQcHUO_h7WMMYo1x-_fL_7PmPQ_b1HrtBcMMmejdOvRgPwWILquBjDGjuQmZUThNym4acJkTuJiSVvdj_QXdFtyPB_wA6LQ3D</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Qiu, Dongwei</creator><creator>Xu, Hao</creator><creator>Luo, Dean</creator><creator>Ye, Qing</creator><creator>Li, Shaofu</creator><creator>Wang, Tong</creator><creator>Ding, Keliang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1665-7440</orcidid><orcidid>https://orcid.org/0000-0002-1313-7044</orcidid><orcidid>https://orcid.org/0000-0002-7431-3814</orcidid><orcidid>https://orcid.org/0000-0002-9825-2075</orcidid><orcidid>https://orcid.org/0000-0002-0633-2298</orcidid><orcidid>https://orcid.org/0000-0001-9981-3324</orcidid></search><sort><creationdate>20200121</creationdate><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><author>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airport construction</topic><topic>Airports</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Beijing</topic><topic>Biology and Life Sciences</topic><topic>Civil engineering</topic><topic>Computer and Information Sciences</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Diameters</topic><topic>Drainage control</topic><topic>Drainage design</topic><topic>Drainage systems</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Engineering and Technology</topic><topic>Feature maps</topic><topic>Floods</topic><topic>Genetic algorithms</topic><topic>Green buildings</topic><topic>Green infrastructure</topic><topic>Green roofs</topic><topic>Informatics</topic><topic>Infrastructure (Economics)</topic><topic>Inspection</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Overflow</topic><topic>Pipes</topic><topic>Rain</topic><topic>Rain water</topic><topic>Rainfall</topic><topic>Rainstorms</topic><topic>Rainwater</topic><topic>Research and Analysis Methods</topic><topic>Runoff</topic><topic>Stormwater</topic><topic>Sustainability</topic><topic>Sustainable design</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Dongwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Luo, Dean</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Li, Shaofu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Ding, Keliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Dongwei</au><au>Xu, Hao</au><au>Luo, Dean</au><au>Ye, Qing</au><au>Li, Shaofu</au><au>Wang, Tong</au><au>Ding, Keliang</au><au>Aschonitis, Vassilis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0227901</spage><epage>e0227901</epage><pages>e0227901-e0227901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31961903</pmid><doi>10.1371/journal.pone.0227901</doi><tpages>e0227901</tpages><orcidid>https://orcid.org/0000-0002-1665-7440</orcidid><orcidid>https://orcid.org/0000-0002-1313-7044</orcidid><orcidid>https://orcid.org/0000-0002-7431-3814</orcidid><orcidid>https://orcid.org/0000-0002-9825-2075</orcidid><orcidid>https://orcid.org/0000-0002-0633-2298</orcidid><orcidid>https://orcid.org/0000-0001-9981-3324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-01, Vol.15 (1), p.e0227901-e0227901
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2343022017
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Airport construction
Airports
Analysis
Artificial neural networks
Beijing
Biology and Life Sciences
Civil engineering
Computer and Information Sciences
Construction
Design optimization
Design parameters
Diameters
Drainage control
Drainage design
Drainage systems
Earth Sciences
Efficiency
Engineering and Technology
Feature maps
Floods
Genetic algorithms
Green buildings
Green infrastructure
Green roofs
Informatics
Infrastructure (Economics)
Inspection
Mathematical models
Models, Theoretical
Neural networks
Neural Networks, Computer
Nuclear energy
Nuclear power plants
Optimization
Overflow
Pipes
Rain
Rain water
Rainfall
Rainstorms
Rainwater
Research and Analysis Methods
Runoff
Stormwater
Sustainability
Sustainable design
Water Movements
title A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rainwater%20control%20optimization%20design%20approach%20for%20airports%20based%20on%20a%20self-organizing%20feature%20map%20neural%20network%20model&rft.jtitle=PloS%20one&rft.au=Qiu,%20Dongwei&rft.date=2020-01-21&rft.volume=15&rft.issue=1&rft.spage=e0227901&rft.epage=e0227901&rft.pages=e0227901-e0227901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0227901&rft_dat=%3Cgale_plos_%3EA611897783%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343022017&rft_id=info:pmid/31961903&rft_galeid=A611897783&rft_doaj_id=oai_doaj_org_article_7cc33abe3da04cb4a3c06d6098fa3e24&rfr_iscdi=true