A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model
To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parame...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-01, Vol.15 (1), p.e0227901-e0227901 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0227901 |
---|---|
container_issue | 1 |
container_start_page | e0227901 |
container_title | PloS one |
container_volume | 15 |
creator | Qiu, Dongwei Xu, Hao Luo, Dean Ye, Qing Li, Shaofu Wang, Tong Ding, Keliang |
description | To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system. |
doi_str_mv | 10.1371/journal.pone.0227901 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2343022017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611897783</galeid><doaj_id>oai_doaj_org_article_7cc33abe3da04cb4a3c06d6098fa3e24</doaj_id><sourcerecordid>A611897783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHiZPcIFUTH5UmTeLr1jq1j1sPJ87shLH9ehzaTS3aBcqFI-c5r_2-OSfLnjM6Z7xi7y78GDpw8953OKd5XjWUPciOWcPzmcgpf7j3fpQ9ifGC0pLXQjzOjjhrBGsoP86uFySA7a5gwECU74bgHfH9YFt7A4P1HdEY7boj0PfBg9oQ4wMBG3ofhkhWEFGTRAGJ6MzMhzV09sZ2a2IQhjEgaaEnHY4BXFqGKx9-ktZrdE-zRwZcxGe79ST7_vHDt9PPs7PzT8vTxdlMiSYfZjqvgPFC11ibmqlGIRpoalXmoBQr6-SOl9jk3IiVqE1pqCjLKtdVjbnWWvCT7OVWt3c-yl1qUea84Ck1yqpELLeE9nAh-2BbCNfSg5V_N5InCWGwyqGslOIcVsg10EKtCuCKCi1oUxvgmBdJ6_3utHHVolaYEgV3IHr4pbMbufa_pGiqglWTwJudQPCXI8ZBtjYqdA469OP23mXyTWlCX_2D3u9uR60hGbCd8elcNYnKhWCsbqqq5oma30OlR2NrU1-gsWn_oODtQcHUO_h7WMMYo1x-_fL_7PmPQ_b1HrtBcMMmejdOvRgPwWILquBjDGjuQmZUThNym4acJkTuJiSVvdj_QXdFtyPB_wA6LQ3D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343022017</pqid></control><display><type>article</type><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang</creator><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang ; Aschonitis, Vassilis G.</creatorcontrib><description>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0227901</identifier><identifier>PMID: 31961903</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Airport construction ; Airports ; Analysis ; Artificial neural networks ; Beijing ; Biology and Life Sciences ; Civil engineering ; Computer and Information Sciences ; Construction ; Design optimization ; Design parameters ; Diameters ; Drainage control ; Drainage design ; Drainage systems ; Earth Sciences ; Efficiency ; Engineering and Technology ; Feature maps ; Floods ; Genetic algorithms ; Green buildings ; Green infrastructure ; Green roofs ; Informatics ; Infrastructure (Economics) ; Inspection ; Mathematical models ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Nuclear energy ; Nuclear power plants ; Optimization ; Overflow ; Pipes ; Rain ; Rain water ; Rainfall ; Rainstorms ; Rainwater ; Research and Analysis Methods ; Runoff ; Stormwater ; Sustainability ; Sustainable design ; Water Movements</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0227901-e0227901</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Qiu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Qiu et al 2020 Qiu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</citedby><cites>FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</cites><orcidid>0000-0002-1665-7440 ; 0000-0002-1313-7044 ; 0000-0002-7431-3814 ; 0000-0002-9825-2075 ; 0000-0002-0633-2298 ; 0000-0001-9981-3324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31961903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aschonitis, Vassilis G.</contributor><creatorcontrib>Qiu, Dongwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Luo, Dean</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Li, Shaofu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Ding, Keliang</creatorcontrib><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</description><subject>Airport construction</subject><subject>Airports</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Beijing</subject><subject>Biology and Life Sciences</subject><subject>Civil engineering</subject><subject>Computer and Information Sciences</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Diameters</subject><subject>Drainage control</subject><subject>Drainage design</subject><subject>Drainage systems</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Engineering and Technology</subject><subject>Feature maps</subject><subject>Floods</subject><subject>Genetic algorithms</subject><subject>Green buildings</subject><subject>Green infrastructure</subject><subject>Green roofs</subject><subject>Informatics</subject><subject>Infrastructure (Economics)</subject><subject>Inspection</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Overflow</subject><subject>Pipes</subject><subject>Rain</subject><subject>Rain water</subject><subject>Rainfall</subject><subject>Rainstorms</subject><subject>Rainwater</subject><subject>Research and Analysis Methods</subject><subject>Runoff</subject><subject>Stormwater</subject><subject>Sustainability</subject><subject>Sustainable design</subject><subject>Water Movements</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHiZPcIFUTH5UmTeLr1jq1j1sPJ87shLH9ehzaTS3aBcqFI-c5r_2-OSfLnjM6Z7xi7y78GDpw8953OKd5XjWUPciOWcPzmcgpf7j3fpQ9ifGC0pLXQjzOjjhrBGsoP86uFySA7a5gwECU74bgHfH9YFt7A4P1HdEY7boj0PfBg9oQ4wMBG3ofhkhWEFGTRAGJ6MzMhzV09sZ2a2IQhjEgaaEnHY4BXFqGKx9-ktZrdE-zRwZcxGe79ST7_vHDt9PPs7PzT8vTxdlMiSYfZjqvgPFC11ibmqlGIRpoalXmoBQr6-SOl9jk3IiVqE1pqCjLKtdVjbnWWvCT7OVWt3c-yl1qUea84Ck1yqpELLeE9nAh-2BbCNfSg5V_N5InCWGwyqGslOIcVsg10EKtCuCKCi1oUxvgmBdJ6_3utHHVolaYEgV3IHr4pbMbufa_pGiqglWTwJudQPCXI8ZBtjYqdA469OP23mXyTWlCX_2D3u9uR60hGbCd8elcNYnKhWCsbqqq5oma30OlR2NrU1-gsWn_oODtQcHUO_h7WMMYo1x-_fL_7PmPQ_b1HrtBcMMmejdOvRgPwWILquBjDGjuQmZUThNym4acJkTuJiSVvdj_QXdFtyPB_wA6LQ3D</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Qiu, Dongwei</creator><creator>Xu, Hao</creator><creator>Luo, Dean</creator><creator>Ye, Qing</creator><creator>Li, Shaofu</creator><creator>Wang, Tong</creator><creator>Ding, Keliang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1665-7440</orcidid><orcidid>https://orcid.org/0000-0002-1313-7044</orcidid><orcidid>https://orcid.org/0000-0002-7431-3814</orcidid><orcidid>https://orcid.org/0000-0002-9825-2075</orcidid><orcidid>https://orcid.org/0000-0002-0633-2298</orcidid><orcidid>https://orcid.org/0000-0001-9981-3324</orcidid></search><sort><creationdate>20200121</creationdate><title>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</title><author>Qiu, Dongwei ; Xu, Hao ; Luo, Dean ; Ye, Qing ; Li, Shaofu ; Wang, Tong ; Ding, Keliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d27a134d8e8f81c9ceefa98c52acc15820335e923f6b68f5f065572d78e2ddd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airport construction</topic><topic>Airports</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Beijing</topic><topic>Biology and Life Sciences</topic><topic>Civil engineering</topic><topic>Computer and Information Sciences</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Diameters</topic><topic>Drainage control</topic><topic>Drainage design</topic><topic>Drainage systems</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Engineering and Technology</topic><topic>Feature maps</topic><topic>Floods</topic><topic>Genetic algorithms</topic><topic>Green buildings</topic><topic>Green infrastructure</topic><topic>Green roofs</topic><topic>Informatics</topic><topic>Infrastructure (Economics)</topic><topic>Inspection</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Overflow</topic><topic>Pipes</topic><topic>Rain</topic><topic>Rain water</topic><topic>Rainfall</topic><topic>Rainstorms</topic><topic>Rainwater</topic><topic>Research and Analysis Methods</topic><topic>Runoff</topic><topic>Stormwater</topic><topic>Sustainability</topic><topic>Sustainable design</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Dongwei</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Luo, Dean</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Li, Shaofu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Ding, Keliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Dongwei</au><au>Xu, Hao</au><au>Luo, Dean</au><au>Ye, Qing</au><au>Li, Shaofu</au><au>Wang, Tong</au><au>Ding, Keliang</au><au>Aschonitis, Vassilis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0227901</spage><epage>e0227901</epage><pages>e0227901-e0227901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31961903</pmid><doi>10.1371/journal.pone.0227901</doi><tpages>e0227901</tpages><orcidid>https://orcid.org/0000-0002-1665-7440</orcidid><orcidid>https://orcid.org/0000-0002-1313-7044</orcidid><orcidid>https://orcid.org/0000-0002-7431-3814</orcidid><orcidid>https://orcid.org/0000-0002-9825-2075</orcidid><orcidid>https://orcid.org/0000-0002-0633-2298</orcidid><orcidid>https://orcid.org/0000-0001-9981-3324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-01, Vol.15 (1), p.e0227901-e0227901 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2343022017 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Airport construction Airports Analysis Artificial neural networks Beijing Biology and Life Sciences Civil engineering Computer and Information Sciences Construction Design optimization Design parameters Diameters Drainage control Drainage design Drainage systems Earth Sciences Efficiency Engineering and Technology Feature maps Floods Genetic algorithms Green buildings Green infrastructure Green roofs Informatics Infrastructure (Economics) Inspection Mathematical models Models, Theoretical Neural networks Neural Networks, Computer Nuclear energy Nuclear power plants Optimization Overflow Pipes Rain Rain water Rainfall Rainstorms Rainwater Research and Analysis Methods Runoff Stormwater Sustainability Sustainable design Water Movements |
title | A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rainwater%20control%20optimization%20design%20approach%20for%20airports%20based%20on%20a%20self-organizing%20feature%20map%20neural%20network%20model&rft.jtitle=PloS%20one&rft.au=Qiu,%20Dongwei&rft.date=2020-01-21&rft.volume=15&rft.issue=1&rft.spage=e0227901&rft.epage=e0227901&rft.pages=e0227901-e0227901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0227901&rft_dat=%3Cgale_plos_%3EA611897783%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343022017&rft_id=info:pmid/31961903&rft_galeid=A611897783&rft_doaj_id=oai_doaj_org_article_7cc33abe3da04cb4a3c06d6098fa3e24&rfr_iscdi=true |