Spatial encoding in primate hippocampus during free navigation

The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2019-12, Vol.17 (12), p.e3000546
Hauptverfasser: Courellis, Hristos S, Nummela, Samuel U, Metke, Michael, Diehl, Geoffrey W, Bussell, Robert, Cauwenberghs, Gert, Miller, Cory T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue. We report place cells in marmoset hippocampus during free navigation that exhibit remarkable parallels to analogous neurons in other mammalian species. Although θ oscillations were prevalent in the marmoset hippocampus, the patterns of activity were notably different than in other taxa. This local field potential oscillation occurred in short bouts (approximately .4 s)-rather than continuously-and was neither significantly modulated by locomotion nor consistently coupled to place-cell activity. These findings suggest that the relationship between place-cell activity and θ oscillations in primate hippocampus during free navigation differs substantially from rodents and paint an intriguing comparative picture regarding the neural basis of spatial navigation across mammals.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.3000546