Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR
Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-01, Vol.15 (1), p.e0225202 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0225202 |
container_title | PloS one |
container_volume | 15 |
creator | Lazdins, Alessandro Maurya, Anand Prakash Miller, Claire E Kamruzzaman, Muhammad Liu, Shuting Stephens, Elton R Lloyd, Georgina S Haratianfar, Mona Chamberlain, Melissa Haines, Anthony S Kreft, Jan-Ulrich Webber, Mark A Iredell, Jonathan Thomas, Christopher M |
description | Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure. |
doi_str_mv | 10.1371/journal.pone.0225202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2338987462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4261456de09342e2af36055c3574d1ff</doaj_id><sourcerecordid>2338987462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-5faacc37a3044be47f67350b5f9e188aaf4590bb0c5168cf53724db535c813003</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO--DJrvmfyIpTiR6GiiD6HO5lkmzU7WZNMpf_ebHdaWvEh5HJzzsm5l9M0LwleEdaRd5s4pwnCahcnu8KUCorpo-aYKEZbSTF7fK8-ap7lvMFYsF7Kp80RI4pjJshx8-dbLHYqHoqPE4oOmTn5aY2GawRoSBHG9jLm0iaY1hZlG1xbap23Pmc_BIuurCkxIVfP6PMugNnTk80-F5iMRbVV0WNGJaIC5lflnH75_rx54iBk-2K5T5qfHz_8OPvcXnz9dH52etEaQWVphQMwhnXAMOeD5Z2THRN4EE5Z0vcAjguFhwEbQWRvnGAd5eMgmDA9YRizk-b1QXcXYtbLzrKmjPWq77ikFXF-QIwRNnqX_BbStY7g9U0jprWGVLwJVnMqCRdytFgxTi0FxyQWwjDR8ZE4V7XeL7_Nw9aOpm42QXgg-vBl8pd6Ha-0VJL0QlWBt4tAir9nm4uuizY2BJhsnG98q05hwva-3_wD_f90_IAyKeacrLszQ7De5-iWpfc50kuOKu3V_UHuSLfBYX8BwUTHVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338987462</pqid></control><display><type>article</type><title>Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lazdins, Alessandro ; Maurya, Anand Prakash ; Miller, Claire E ; Kamruzzaman, Muhammad ; Liu, Shuting ; Stephens, Elton R ; Lloyd, Georgina S ; Haratianfar, Mona ; Chamberlain, Melissa ; Haines, Anthony S ; Kreft, Jan-Ulrich ; Webber, Mark A ; Iredell, Jonathan ; Thomas, Christopher M</creator><contributor>Koraimann, Günther</contributor><creatorcontrib>Lazdins, Alessandro ; Maurya, Anand Prakash ; Miller, Claire E ; Kamruzzaman, Muhammad ; Liu, Shuting ; Stephens, Elton R ; Lloyd, Georgina S ; Haratianfar, Mona ; Chamberlain, Melissa ; Haines, Anthony S ; Kreft, Jan-Ulrich ; Webber, Mark A ; Iredell, Jonathan ; Thomas, Christopher M ; Koraimann, Günther</creatorcontrib><description>Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0225202</identifier><identifier>PMID: 31940351</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Addictions ; Animals ; Antibiotic resistance ; Antibiotics ; Antimicrobial agents ; Bacteria ; Bacterial Infections - drug therapy ; Bacterial Infections - genetics ; Bacterial Infections - microbiology ; Binding sites ; Biology and life sciences ; Cassettes ; Conjugation, Genetic - genetics ; Control systems ; Copy number ; Curing ; Disease Models, Animal ; Displacement ; DNA Copy Number Variations - genetics ; DNA Primase - genetics ; Drug resistance ; Drug Resistance, Bacterial - genetics ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal Microbiome - genetics ; Host Specificity - genetics ; Humans ; Infections ; Infectious diseases ; Medical research ; Medicine and Health Sciences ; Mice ; Microbiota ; ParB gene ; Physical Sciences ; Plasmids ; Plasmids - drug effects ; Plasmids - genetics ; Potentiation ; Replication ; Replication origins ; Research and analysis methods ; Vectors</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0225202</ispartof><rights>2020 Lazdins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Lazdins et al 2020 Lazdins et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-5faacc37a3044be47f67350b5f9e188aaf4590bb0c5168cf53724db535c813003</citedby><cites>FETCH-LOGICAL-c526t-5faacc37a3044be47f67350b5f9e188aaf4590bb0c5168cf53724db535c813003</cites><orcidid>0000-0002-2810-0455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koraimann, Günther</contributor><creatorcontrib>Lazdins, Alessandro</creatorcontrib><creatorcontrib>Maurya, Anand Prakash</creatorcontrib><creatorcontrib>Miller, Claire E</creatorcontrib><creatorcontrib>Kamruzzaman, Muhammad</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Stephens, Elton R</creatorcontrib><creatorcontrib>Lloyd, Georgina S</creatorcontrib><creatorcontrib>Haratianfar, Mona</creatorcontrib><creatorcontrib>Chamberlain, Melissa</creatorcontrib><creatorcontrib>Haines, Anthony S</creatorcontrib><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Webber, Mark A</creatorcontrib><creatorcontrib>Iredell, Jonathan</creatorcontrib><creatorcontrib>Thomas, Christopher M</creatorcontrib><title>Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.</description><subject>Addictions</subject><subject>Animals</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Infections - genetics</subject><subject>Bacterial Infections - microbiology</subject><subject>Binding sites</subject><subject>Biology and life sciences</subject><subject>Cassettes</subject><subject>Conjugation, Genetic - genetics</subject><subject>Control systems</subject><subject>Copy number</subject><subject>Curing</subject><subject>Disease Models, Animal</subject><subject>Displacement</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA Primase - genetics</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Host Specificity - genetics</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Microbiota</subject><subject>ParB gene</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Plasmids - drug effects</subject><subject>Plasmids - genetics</subject><subject>Potentiation</subject><subject>Replication</subject><subject>Replication origins</subject><subject>Research and analysis methods</subject><subject>Vectors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO--DJrvmfyIpTiR6GiiD6HO5lkmzU7WZNMpf_ebHdaWvEh5HJzzsm5l9M0LwleEdaRd5s4pwnCahcnu8KUCorpo-aYKEZbSTF7fK8-ap7lvMFYsF7Kp80RI4pjJshx8-dbLHYqHoqPE4oOmTn5aY2GawRoSBHG9jLm0iaY1hZlG1xbap23Pmc_BIuurCkxIVfP6PMugNnTk80-F5iMRbVV0WNGJaIC5lflnH75_rx54iBk-2K5T5qfHz_8OPvcXnz9dH52etEaQWVphQMwhnXAMOeD5Z2THRN4EE5Z0vcAjguFhwEbQWRvnGAd5eMgmDA9YRizk-b1QXcXYtbLzrKmjPWq77ikFXF-QIwRNnqX_BbStY7g9U0jprWGVLwJVnMqCRdytFgxTi0FxyQWwjDR8ZE4V7XeL7_Nw9aOpm42QXgg-vBl8pd6Ha-0VJL0QlWBt4tAir9nm4uuizY2BJhsnG98q05hwva-3_wD_f90_IAyKeacrLszQ7De5-iWpfc50kuOKu3V_UHuSLfBYX8BwUTHVQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lazdins, Alessandro</creator><creator>Maurya, Anand Prakash</creator><creator>Miller, Claire E</creator><creator>Kamruzzaman, Muhammad</creator><creator>Liu, Shuting</creator><creator>Stephens, Elton R</creator><creator>Lloyd, Georgina S</creator><creator>Haratianfar, Mona</creator><creator>Chamberlain, Melissa</creator><creator>Haines, Anthony S</creator><creator>Kreft, Jan-Ulrich</creator><creator>Webber, Mark A</creator><creator>Iredell, Jonathan</creator><creator>Thomas, Christopher M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2810-0455</orcidid></search><sort><creationdate>20200101</creationdate><title>Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR</title><author>Lazdins, Alessandro ; Maurya, Anand Prakash ; Miller, Claire E ; Kamruzzaman, Muhammad ; Liu, Shuting ; Stephens, Elton R ; Lloyd, Georgina S ; Haratianfar, Mona ; Chamberlain, Melissa ; Haines, Anthony S ; Kreft, Jan-Ulrich ; Webber, Mark A ; Iredell, Jonathan ; Thomas, Christopher M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-5faacc37a3044be47f67350b5f9e188aaf4590bb0c5168cf53724db535c813003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addictions</topic><topic>Animals</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Infections - genetics</topic><topic>Bacterial Infections - microbiology</topic><topic>Binding sites</topic><topic>Biology and life sciences</topic><topic>Cassettes</topic><topic>Conjugation, Genetic - genetics</topic><topic>Control systems</topic><topic>Copy number</topic><topic>Curing</topic><topic>Disease Models, Animal</topic><topic>Displacement</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA Primase - genetics</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Host Specificity - genetics</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Microbiota</topic><topic>ParB gene</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Plasmids - drug effects</topic><topic>Plasmids - genetics</topic><topic>Potentiation</topic><topic>Replication</topic><topic>Replication origins</topic><topic>Research and analysis methods</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazdins, Alessandro</creatorcontrib><creatorcontrib>Maurya, Anand Prakash</creatorcontrib><creatorcontrib>Miller, Claire E</creatorcontrib><creatorcontrib>Kamruzzaman, Muhammad</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Stephens, Elton R</creatorcontrib><creatorcontrib>Lloyd, Georgina S</creatorcontrib><creatorcontrib>Haratianfar, Mona</creatorcontrib><creatorcontrib>Chamberlain, Melissa</creatorcontrib><creatorcontrib>Haines, Anthony S</creatorcontrib><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Webber, Mark A</creatorcontrib><creatorcontrib>Iredell, Jonathan</creatorcontrib><creatorcontrib>Thomas, Christopher M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazdins, Alessandro</au><au>Maurya, Anand Prakash</au><au>Miller, Claire E</au><au>Kamruzzaman, Muhammad</au><au>Liu, Shuting</au><au>Stephens, Elton R</au><au>Lloyd, Georgina S</au><au>Haratianfar, Mona</au><au>Chamberlain, Melissa</au><au>Haines, Anthony S</au><au>Kreft, Jan-Ulrich</au><au>Webber, Mark A</au><au>Iredell, Jonathan</au><au>Thomas, Christopher M</au><au>Koraimann, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0225202</spage><pages>e0225202-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31940351</pmid><doi>10.1371/journal.pone.0225202</doi><orcidid>https://orcid.org/0000-0002-2810-0455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-01, Vol.15 (1), p.e0225202 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2338987462 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Addictions Animals Antibiotic resistance Antibiotics Antimicrobial agents Bacteria Bacterial Infections - drug therapy Bacterial Infections - genetics Bacterial Infections - microbiology Binding sites Biology and life sciences Cassettes Conjugation, Genetic - genetics Control systems Copy number Curing Disease Models, Animal Displacement DNA Copy Number Variations - genetics DNA Primase - genetics Drug resistance Drug Resistance, Bacterial - genetics Escherichia coli - genetics Escherichia coli Proteins - genetics Gastrointestinal Microbiome - drug effects Gastrointestinal Microbiome - genetics Host Specificity - genetics Humans Infections Infectious diseases Medical research Medicine and Health Sciences Mice Microbiota ParB gene Physical Sciences Plasmids Plasmids - drug effects Plasmids - genetics Potentiation Replication Replication origins Research and analysis methods Vectors |
title | Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potentiation%20of%20curing%20by%20a%20broad-host-range%20self-transmissible%20vector%20for%20displacing%20resistance%20plasmids%20to%20tackle%20AMR&rft.jtitle=PloS%20one&rft.au=Lazdins,%20Alessandro&rft.date=2020-01-01&rft.volume=15&rft.issue=1&rft.spage=e0225202&rft.pages=e0225202-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0225202&rft_dat=%3Cproquest_plos_%3E2338987462%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338987462&rft_id=info:pmid/31940351&rft_doaj_id=oai_doaj_org_article_4261456de09342e2af36055c3574d1ff&rfr_iscdi=true |