Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide
Third-stage larvae (L3) of Steinernema feltiae exist as free-living infective juveniles (IJ), with suspended development activities. In contrast, parasitic stages (L1, L2, L4, adult) have mutualistic relations with Xenorhabdus species bacteria, along with unique morphological changes and development...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-01, Vol.15 (1), p.e0227448-e0227448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0227448 |
---|---|
container_issue | 1 |
container_start_page | e0227448 |
container_title | PloS one |
container_volume | 15 |
creator | Mashela, Phatu W Shokoohi, Ebrahim Pofu, Kgabo M |
description | Third-stage larvae (L3) of Steinernema feltiae exist as free-living infective juveniles (IJ), with suspended development activities. In contrast, parasitic stages (L1, L2, L4, adult) have mutualistic relations with Xenorhabdus species bacteria, along with unique morphological changes and development inside the cadaver of host insects and/or plant-parasitic nematodes. Commercial IJ strains are tolerant to cucurbitacin-containing phytonematicides, but we have scant information on how morphological adjustments in IJ are achieved. In this study, we investigated the nature of morphological adjustments in commercial S. feltiae IJ strains to Nemafric-BL phytonematicide, which contains cucurbitacin B as active ingredient. Post-72 h exposure to phytonematicide concentration, IJ specimens were fixed on mounting slides. Length (body, excretory pore to anterior end, pharynx, rectum, stoma, tail), diameter (head width, neck base, mid-body, anal body), cuticle thickness and De Man ratios were measured with a computer software programme attached to Omax light microscope. Morphometric data against increasing phytonematicide concentration exhibited either density-dependent quadratic, linear or neutral relations. Increase in body length at low phytonematicide concentration was accompanied by decrease in tail length and pharynx length during muscle contraction when IJ were still alive. After death at high phytonematicide concentration, the opposite morphometric effects ensued due to muscle relaxation. The observed changes in morphometric structures were explained on the basis of morphological adjustments that modulated volumes of pseudocoelom cavity in IJ. The modulation is intended to maintain hydrostatic pressure within permissible upper limits in order to avoid structural damage to internal organs embedded in the pseudocoelom fluids. |
doi_str_mv | 10.1371/journal.pone.0227448 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2332335908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610390185</galeid><doaj_id>oai_doaj_org_article_0419b0328b104cf7b5b06cece81d7c5c</doaj_id><sourcerecordid>A610390185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-47a35b3ee81241a639ecc8c320c7b185e5074ffe068250e5a7510038de2d42a3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXsjrIsfA6sL7uJtSNPTToZMMpukg_sX_NWmO91lKnshLbSkz_vm5D09SfISowWmJf6wtoMzQi-21sACEVLmefUoOcY1JRkjiD4-eD9Knnm_RqigFWNPkyOKq7ouGT1O_ny3bruy2vZKCp2Kdj34sAETUmXSzgFkWu2U6dPLAMqAM7ARaQc6KAER6UAGtYN0PezAKA0-DTYuSwfCjyppjYxmTgRlTWq79EfUd07J7NN5ul3dBDsaBiVVC8-TJ53QHl5Mz5Pk6svnq7Nv2fnF1-XZ6XkmWU1ClpeCFg0FqDDJsWC0BikrSQmSZYOrAgpU5l0HiFWkQFCIssAI0aoF0uZE0JPk9d52q63nU4qeE0rjXdSoisRyT7RWrPnWqY1wN9wKxW8XrOu5cLFmDRzluG4QJVWDUS67sikaxCTIWFxbykJGr4_TbkOzgXYfhp6Zzr8YteK93XFW57giJBq8mwycvR7AB75RXoLWwoAdbuumLFZAWETf_IM-fLqJ6kU8QGyhjfvK0ZSfMoxojWKIkVo8QMWrhY2KXYUudnsueD8TRCbA79CLwXu-vPz5_-zFrzn79oBdgdBh5a0exh_Kz8F8D0pnvXfQ3YeMER8n5i4NPk4MnyYmyl4dNuhedDci9C9qAxMs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332335908</pqid></control><display><type>article</type><title>Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mashela, Phatu W ; Shokoohi, Ebrahim ; Pofu, Kgabo M</creator><contributor>Dillman, Adler R.</contributor><creatorcontrib>Mashela, Phatu W ; Shokoohi, Ebrahim ; Pofu, Kgabo M ; Dillman, Adler R.</creatorcontrib><description>Third-stage larvae (L3) of Steinernema feltiae exist as free-living infective juveniles (IJ), with suspended development activities. In contrast, parasitic stages (L1, L2, L4, adult) have mutualistic relations with Xenorhabdus species bacteria, along with unique morphological changes and development inside the cadaver of host insects and/or plant-parasitic nematodes. Commercial IJ strains are tolerant to cucurbitacin-containing phytonematicides, but we have scant information on how morphological adjustments in IJ are achieved. In this study, we investigated the nature of morphological adjustments in commercial S. feltiae IJ strains to Nemafric-BL phytonematicide, which contains cucurbitacin B as active ingredient. Post-72 h exposure to phytonematicide concentration, IJ specimens were fixed on mounting slides. Length (body, excretory pore to anterior end, pharynx, rectum, stoma, tail), diameter (head width, neck base, mid-body, anal body), cuticle thickness and De Man ratios were measured with a computer software programme attached to Omax light microscope. Morphometric data against increasing phytonematicide concentration exhibited either density-dependent quadratic, linear or neutral relations. Increase in body length at low phytonematicide concentration was accompanied by decrease in tail length and pharynx length during muscle contraction when IJ were still alive. After death at high phytonematicide concentration, the opposite morphometric effects ensued due to muscle relaxation. The observed changes in morphometric structures were explained on the basis of morphological adjustments that modulated volumes of pseudocoelom cavity in IJ. The modulation is intended to maintain hydrostatic pressure within permissible upper limits in order to avoid structural damage to internal organs embedded in the pseudocoelom fluids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0227448</identifier><identifier>PMID: 31899763</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antinematodal Agents - chemistry ; Antinematodal Agents - metabolism ; Antinematodal Agents - pharmacology ; Bacteria ; Biology and Life Sciences ; Body length ; Body Size - drug effects ; Citrus ; Containers ; Diameters ; Gene expression ; Host plants ; Hydrostatic pressure ; Insects ; Larva - anatomy & histology ; Larva - drug effects ; Larva - physiology ; Larvae ; Medicine and Health Sciences ; Microorganisms ; Microscopy ; Morphology ; Muscle contraction ; Muscles ; Muscular function ; Nematodes ; Organs ; Ostomy ; Pharynx ; Physical Sciences ; Ratios ; Rectum ; Research and Analysis Methods ; Rhabditida - drug effects ; Rhabditida - growth & development ; Rhabditida - physiology ; Roundworms ; Steinernema feltiae ; Strains (organisms) ; Symbiosis ; Triterpenes - pharmacology ; Xenorhabdus - physiology</subject><ispartof>PloS one, 2020-01, Vol.15 (1), p.e0227448-e0227448</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Mashela et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Mashela et al 2020 Mashela et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-47a35b3ee81241a639ecc8c320c7b185e5074ffe068250e5a7510038de2d42a3</citedby><cites>FETCH-LOGICAL-c692t-47a35b3ee81241a639ecc8c320c7b185e5074ffe068250e5a7510038de2d42a3</cites><orcidid>0000-0002-9759-2625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941822/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941822/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31899763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dillman, Adler R.</contributor><creatorcontrib>Mashela, Phatu W</creatorcontrib><creatorcontrib>Shokoohi, Ebrahim</creatorcontrib><creatorcontrib>Pofu, Kgabo M</creatorcontrib><title>Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Third-stage larvae (L3) of Steinernema feltiae exist as free-living infective juveniles (IJ), with suspended development activities. In contrast, parasitic stages (L1, L2, L4, adult) have mutualistic relations with Xenorhabdus species bacteria, along with unique morphological changes and development inside the cadaver of host insects and/or plant-parasitic nematodes. Commercial IJ strains are tolerant to cucurbitacin-containing phytonematicides, but we have scant information on how morphological adjustments in IJ are achieved. In this study, we investigated the nature of morphological adjustments in commercial S. feltiae IJ strains to Nemafric-BL phytonematicide, which contains cucurbitacin B as active ingredient. Post-72 h exposure to phytonematicide concentration, IJ specimens were fixed on mounting slides. Length (body, excretory pore to anterior end, pharynx, rectum, stoma, tail), diameter (head width, neck base, mid-body, anal body), cuticle thickness and De Man ratios were measured with a computer software programme attached to Omax light microscope. Morphometric data against increasing phytonematicide concentration exhibited either density-dependent quadratic, linear or neutral relations. Increase in body length at low phytonematicide concentration was accompanied by decrease in tail length and pharynx length during muscle contraction when IJ were still alive. After death at high phytonematicide concentration, the opposite morphometric effects ensued due to muscle relaxation. The observed changes in morphometric structures were explained on the basis of morphological adjustments that modulated volumes of pseudocoelom cavity in IJ. The modulation is intended to maintain hydrostatic pressure within permissible upper limits in order to avoid structural damage to internal organs embedded in the pseudocoelom fluids.</description><subject>Animals</subject><subject>Antinematodal Agents - chemistry</subject><subject>Antinematodal Agents - metabolism</subject><subject>Antinematodal Agents - pharmacology</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Body length</subject><subject>Body Size - drug effects</subject><subject>Citrus</subject><subject>Containers</subject><subject>Diameters</subject><subject>Gene expression</subject><subject>Host plants</subject><subject>Hydrostatic pressure</subject><subject>Insects</subject><subject>Larva - anatomy & histology</subject><subject>Larva - drug effects</subject><subject>Larva - physiology</subject><subject>Larvae</subject><subject>Medicine and Health Sciences</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Nematodes</subject><subject>Organs</subject><subject>Ostomy</subject><subject>Pharynx</subject><subject>Physical Sciences</subject><subject>Ratios</subject><subject>Rectum</subject><subject>Research and Analysis Methods</subject><subject>Rhabditida - drug effects</subject><subject>Rhabditida - growth & development</subject><subject>Rhabditida - physiology</subject><subject>Roundworms</subject><subject>Steinernema feltiae</subject><subject>Strains (organisms)</subject><subject>Symbiosis</subject><subject>Triterpenes - pharmacology</subject><subject>Xenorhabdus - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y0aXsjrIsfA6sL7uJtSNPTToZMMpukg_sX_NWmO91lKnshLbSkz_vm5D09SfISowWmJf6wtoMzQi-21sACEVLmefUoOcY1JRkjiD4-eD9Knnm_RqigFWNPkyOKq7ouGT1O_ny3bruy2vZKCp2Kdj34sAETUmXSzgFkWu2U6dPLAMqAM7ARaQc6KAER6UAGtYN0PezAKA0-DTYuSwfCjyppjYxmTgRlTWq79EfUd07J7NN5ul3dBDsaBiVVC8-TJ53QHl5Mz5Pk6svnq7Nv2fnF1-XZ6XkmWU1ClpeCFg0FqDDJsWC0BikrSQmSZYOrAgpU5l0HiFWkQFCIssAI0aoF0uZE0JPk9d52q63nU4qeE0rjXdSoisRyT7RWrPnWqY1wN9wKxW8XrOu5cLFmDRzluG4QJVWDUS67sikaxCTIWFxbykJGr4_TbkOzgXYfhp6Zzr8YteK93XFW57giJBq8mwycvR7AB75RXoLWwoAdbuumLFZAWETf_IM-fLqJ6kU8QGyhjfvK0ZSfMoxojWKIkVo8QMWrhY2KXYUudnsueD8TRCbA79CLwXu-vPz5_-zFrzn79oBdgdBh5a0exh_Kz8F8D0pnvXfQ3YeMER8n5i4NPk4MnyYmyl4dNuhedDci9C9qAxMs</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Mashela, Phatu W</creator><creator>Shokoohi, Ebrahim</creator><creator>Pofu, Kgabo M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9759-2625</orcidid></search><sort><creationdate>20200103</creationdate><title>Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide</title><author>Mashela, Phatu W ; Shokoohi, Ebrahim ; Pofu, Kgabo M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-47a35b3ee81241a639ecc8c320c7b185e5074ffe068250e5a7510038de2d42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antinematodal Agents - chemistry</topic><topic>Antinematodal Agents - metabolism</topic><topic>Antinematodal Agents - pharmacology</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Body length</topic><topic>Body Size - drug effects</topic><topic>Citrus</topic><topic>Containers</topic><topic>Diameters</topic><topic>Gene expression</topic><topic>Host plants</topic><topic>Hydrostatic pressure</topic><topic>Insects</topic><topic>Larva - anatomy & histology</topic><topic>Larva - drug effects</topic><topic>Larva - physiology</topic><topic>Larvae</topic><topic>Medicine and Health Sciences</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Nematodes</topic><topic>Organs</topic><topic>Ostomy</topic><topic>Pharynx</topic><topic>Physical Sciences</topic><topic>Ratios</topic><topic>Rectum</topic><topic>Research and Analysis Methods</topic><topic>Rhabditida - drug effects</topic><topic>Rhabditida - growth & development</topic><topic>Rhabditida - physiology</topic><topic>Roundworms</topic><topic>Steinernema feltiae</topic><topic>Strains (organisms)</topic><topic>Symbiosis</topic><topic>Triterpenes - pharmacology</topic><topic>Xenorhabdus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashela, Phatu W</creatorcontrib><creatorcontrib>Shokoohi, Ebrahim</creatorcontrib><creatorcontrib>Pofu, Kgabo M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashela, Phatu W</au><au>Shokoohi, Ebrahim</au><au>Pofu, Kgabo M</au><au>Dillman, Adler R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>e0227448</spage><epage>e0227448</epage><pages>e0227448-e0227448</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Third-stage larvae (L3) of Steinernema feltiae exist as free-living infective juveniles (IJ), with suspended development activities. In contrast, parasitic stages (L1, L2, L4, adult) have mutualistic relations with Xenorhabdus species bacteria, along with unique morphological changes and development inside the cadaver of host insects and/or plant-parasitic nematodes. Commercial IJ strains are tolerant to cucurbitacin-containing phytonematicides, but we have scant information on how morphological adjustments in IJ are achieved. In this study, we investigated the nature of morphological adjustments in commercial S. feltiae IJ strains to Nemafric-BL phytonematicide, which contains cucurbitacin B as active ingredient. Post-72 h exposure to phytonematicide concentration, IJ specimens were fixed on mounting slides. Length (body, excretory pore to anterior end, pharynx, rectum, stoma, tail), diameter (head width, neck base, mid-body, anal body), cuticle thickness and De Man ratios were measured with a computer software programme attached to Omax light microscope. Morphometric data against increasing phytonematicide concentration exhibited either density-dependent quadratic, linear or neutral relations. Increase in body length at low phytonematicide concentration was accompanied by decrease in tail length and pharynx length during muscle contraction when IJ were still alive. After death at high phytonematicide concentration, the opposite morphometric effects ensued due to muscle relaxation. The observed changes in morphometric structures were explained on the basis of morphological adjustments that modulated volumes of pseudocoelom cavity in IJ. The modulation is intended to maintain hydrostatic pressure within permissible upper limits in order to avoid structural damage to internal organs embedded in the pseudocoelom fluids.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31899763</pmid><doi>10.1371/journal.pone.0227448</doi><tpages>e0227448</tpages><orcidid>https://orcid.org/0000-0002-9759-2625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-01, Vol.15 (1), p.e0227448-e0227448 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2332335908 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Antinematodal Agents - chemistry Antinematodal Agents - metabolism Antinematodal Agents - pharmacology Bacteria Biology and Life Sciences Body length Body Size - drug effects Citrus Containers Diameters Gene expression Host plants Hydrostatic pressure Insects Larva - anatomy & histology Larva - drug effects Larva - physiology Larvae Medicine and Health Sciences Microorganisms Microscopy Morphology Muscle contraction Muscles Muscular function Nematodes Organs Ostomy Pharynx Physical Sciences Ratios Rectum Research and Analysis Methods Rhabditida - drug effects Rhabditida - growth & development Rhabditida - physiology Roundworms Steinernema feltiae Strains (organisms) Symbiosis Triterpenes - pharmacology Xenorhabdus - physiology |
title | Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20adjustment%20in%20free-living%20Steinernema%20feltiae%20infective%20juveniles%20to%20increasing%20concentration%20of%20Nemafric-BL%20phytonematicide&rft.jtitle=PloS%20one&rft.au=Mashela,%20Phatu%20W&rft.date=2020-01-03&rft.volume=15&rft.issue=1&rft.spage=e0227448&rft.epage=e0227448&rft.pages=e0227448-e0227448&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0227448&rft_dat=%3Cgale_plos_%3EA610390185%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332335908&rft_id=info:pmid/31899763&rft_galeid=A610390185&rft_doaj_id=oai_doaj_org_article_0419b0328b104cf7b5b06cece81d7c5c&rfr_iscdi=true |