A novel model for malaria prediction based on ensemble algorithms

Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-12, Vol.14 (12), p.e0226910-e0226910
Hauptverfasser: Wang, Mengyang, Wang, Hui, Wang, Jiao, Liu, Hongwei, Lu, Rui, Duan, Tongqing, Gong, Xiaowen, Feng, Siyuan, Liu, Yuanyuan, Cui, Zhuang, Li, Changping, Ma, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0226910
container_issue 12
container_start_page e0226910
container_title PloS one
container_volume 14
creator Wang, Mengyang
Wang, Hui
Wang, Jiao
Liu, Hongwei
Lu, Rui
Duan, Tongqing
Gong, Xiaowen
Feng, Siyuan
Liu, Yuanyuan
Cui, Zhuang
Li, Changping
Ma, Jun
description Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study compares the performance of traditional time series models and deep learning algorithms in malaria case prediction and explores the application value of stacking methods in the field of infectious disease prediction. The ARIMA, STL+ARIMA, BP-ANN and LSTM network models were separately applied in simulations using malaria data and meteorological data in Yunnan Province from 2011 to 2017. We compared the predictive performance of each model through evaluation measures: RMSE, MASE, MAD. In addition, gradient-boosting regression trees (GBRTs) were used to combine the above four models. We also determined whether stacking structure improved the model prediction performance. The root mean square errors (RMSEs) of the four sub-models were 13.176, 14.543, 9.571 and 7.208; the mean absolute scaled errors (MASEs) were 0.469, 0.472, 0.296 and 0.266 and the mean absolute deviation (MAD) were 6.403, 7.658, 5.871 and 5.691. After using the stacking architecture combined with the above four models, the RMSE, MASE and MAD values of the ensemble model decreased to 6.810, 0.224 and 4.625, respectively. A novel ensemble model based on the robustness of structured prediction and model combination through stacking was developed. The findings suggest that the predictive performance of the final model is superior to that of the other four sub-models, indicating that stacking architecture may have significant implications in infectious disease prediction.
doi_str_mv 10.1371/journal.pone.0226910
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2330772090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609782070</galeid><doaj_id>oai_doaj_org_article_4768565100c44f23aedfb15fdd993df4</doaj_id><sourcerecordid>A609782070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6bd63607dceea205ef78cccc2fff3ca1c5a9ddb3e573410d1dd3306f79ff03aa3</originalsourceid><addsrcrecordid>eNqNkl2L3CAUhkNp6W6n_QelDRRKezFTPxJNbgrD0o-BhYV-3YrR44yDibOaLO2_r9nJLpOyF1VQ0ee8eo5vlr3EaIUpxx_2fgiddKuD72CFCGE1Ro-yc1xTsmQE0ccn67PsWYx7hEpaMfY0O6O44hxX5Xm2XuedvwGXt16n0fiQt9LJYGV-CKCt6q3v8kZG0HlaQBehbRzk0m19sP2ujc-zJ0a6CC-meZH9_Pzpx8XX5eXVl83F-nKpWE36JWs0owxxrQAkQSUYXqnUiDGGKolVKWutGwolpwVGGmtNKWKG18YgKiVdZK-Pugfno5iyj4IkinOCapSIzZHQXu7FIdhWhj_CSytuN3zYChl6qxyIgrOqZCVGSBWFIVSCNg0ujdZ1TbUpktbH6bahaSE9uuuDdDPR-Ulnd2LrbwRLNedJZJG9mwSCvx4g9qK1UYFzsgM_3L4bk6KqOU_om3_Qh7ObqK1MCdjO-HSvGkXFmqGaVwTxkVo9QKWuobUqWcXYtD8LeD8LSEwPv_utHGIUm-_f_p-9-jVn356wO5Cu30XvhtFPcQ4WR1AFH2MAc19kjMTo9LtqiNHpYnJ6Cnt1-kH3QXfWpn8BHBD4oQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330772090</pqid></control><display><type>article</type><title>A novel model for malaria prediction based on ensemble algorithms</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Mengyang ; Wang, Hui ; Wang, Jiao ; Liu, Hongwei ; Lu, Rui ; Duan, Tongqing ; Gong, Xiaowen ; Feng, Siyuan ; Liu, Yuanyuan ; Cui, Zhuang ; Li, Changping ; Ma, Jun</creator><creatorcontrib>Wang, Mengyang ; Wang, Hui ; Wang, Jiao ; Liu, Hongwei ; Lu, Rui ; Duan, Tongqing ; Gong, Xiaowen ; Feng, Siyuan ; Liu, Yuanyuan ; Cui, Zhuang ; Li, Changping ; Ma, Jun</creatorcontrib><description>Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study compares the performance of traditional time series models and deep learning algorithms in malaria case prediction and explores the application value of stacking methods in the field of infectious disease prediction. The ARIMA, STL+ARIMA, BP-ANN and LSTM network models were separately applied in simulations using malaria data and meteorological data in Yunnan Province from 2011 to 2017. We compared the predictive performance of each model through evaluation measures: RMSE, MASE, MAD. In addition, gradient-boosting regression trees (GBRTs) were used to combine the above four models. We also determined whether stacking structure improved the model prediction performance. The root mean square errors (RMSEs) of the four sub-models were 13.176, 14.543, 9.571 and 7.208; the mean absolute scaled errors (MASEs) were 0.469, 0.472, 0.296 and 0.266 and the mean absolute deviation (MAD) were 6.403, 7.658, 5.871 and 5.691. After using the stacking architecture combined with the above four models, the RMSE, MASE and MAD values of the ensemble model decreased to 6.810, 0.224 and 4.625, respectively. A novel ensemble model based on the robustness of structured prediction and model combination through stacking was developed. The findings suggest that the predictive performance of the final model is superior to that of the other four sub-models, indicating that stacking architecture may have significant implications in infectious disease prediction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0226910</identifier><identifier>PMID: 31877185</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Architecture ; Atmospheric models ; Biology and Life Sciences ; China - epidemiology ; Communicable diseases ; Communicable Diseases - epidemiology ; Computer and Information Sciences ; Computer simulation ; Data mining ; Data structures ; Deep Learning ; Epidemics ; Humans ; Incidence ; Infectious diseases ; Learning algorithms ; Machine learning ; Malaria ; Malaria - epidemiology ; Medicine and Health Sciences ; Meteorological data ; Neural networks ; Novels ; People and Places ; Performance prediction ; Physical Sciences ; Precipitation ; Public health ; Regression analysis ; Research and Analysis Methods ; Stacking ; Statistical analysis ; Studies ; Teaching methods ; Time series ; Vector-borne diseases ; Weather</subject><ispartof>PloS one, 2019-12, Vol.14 (12), p.e0226910-e0226910</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Wang et al 2019 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6bd63607dceea205ef78cccc2fff3ca1c5a9ddb3e573410d1dd3306f79ff03aa3</citedby><cites>FETCH-LOGICAL-c692t-6bd63607dceea205ef78cccc2fff3ca1c5a9ddb3e573410d1dd3306f79ff03aa3</cites><orcidid>0000-0002-8690-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932799/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932799/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31877185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengyang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Duan, Tongqing</creatorcontrib><creatorcontrib>Gong, Xiaowen</creatorcontrib><creatorcontrib>Feng, Siyuan</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Zhuang</creatorcontrib><creatorcontrib>Li, Changping</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><title>A novel model for malaria prediction based on ensemble algorithms</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study compares the performance of traditional time series models and deep learning algorithms in malaria case prediction and explores the application value of stacking methods in the field of infectious disease prediction. The ARIMA, STL+ARIMA, BP-ANN and LSTM network models were separately applied in simulations using malaria data and meteorological data in Yunnan Province from 2011 to 2017. We compared the predictive performance of each model through evaluation measures: RMSE, MASE, MAD. In addition, gradient-boosting regression trees (GBRTs) were used to combine the above four models. We also determined whether stacking structure improved the model prediction performance. The root mean square errors (RMSEs) of the four sub-models were 13.176, 14.543, 9.571 and 7.208; the mean absolute scaled errors (MASEs) were 0.469, 0.472, 0.296 and 0.266 and the mean absolute deviation (MAD) were 6.403, 7.658, 5.871 and 5.691. After using the stacking architecture combined with the above four models, the RMSE, MASE and MAD values of the ensemble model decreased to 6.810, 0.224 and 4.625, respectively. A novel ensemble model based on the robustness of structured prediction and model combination through stacking was developed. The findings suggest that the predictive performance of the final model is superior to that of the other four sub-models, indicating that stacking architecture may have significant implications in infectious disease prediction.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Architecture</subject><subject>Atmospheric models</subject><subject>Biology and Life Sciences</subject><subject>China - epidemiology</subject><subject>Communicable diseases</subject><subject>Communicable Diseases - epidemiology</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Deep Learning</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infectious diseases</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Malaria</subject><subject>Malaria - epidemiology</subject><subject>Medicine and Health Sciences</subject><subject>Meteorological data</subject><subject>Neural networks</subject><subject>Novels</subject><subject>People and Places</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Stacking</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Teaching methods</subject><subject>Time series</subject><subject>Vector-borne diseases</subject><subject>Weather</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L3CAUhkNp6W6n_QelDRRKezFTPxJNbgrD0o-BhYV-3YrR44yDibOaLO2_r9nJLpOyF1VQ0ee8eo5vlr3EaIUpxx_2fgiddKuD72CFCGE1Ro-yc1xTsmQE0ccn67PsWYx7hEpaMfY0O6O44hxX5Xm2XuedvwGXt16n0fiQt9LJYGV-CKCt6q3v8kZG0HlaQBehbRzk0m19sP2ujc-zJ0a6CC-meZH9_Pzpx8XX5eXVl83F-nKpWE36JWs0owxxrQAkQSUYXqnUiDGGKolVKWutGwolpwVGGmtNKWKG18YgKiVdZK-Pugfno5iyj4IkinOCapSIzZHQXu7FIdhWhj_CSytuN3zYChl6qxyIgrOqZCVGSBWFIVSCNg0ujdZ1TbUpktbH6bahaSE9uuuDdDPR-Ulnd2LrbwRLNedJZJG9mwSCvx4g9qK1UYFzsgM_3L4bk6KqOU_om3_Qh7ObqK1MCdjO-HSvGkXFmqGaVwTxkVo9QKWuobUqWcXYtD8LeD8LSEwPv_utHGIUm-_f_p-9-jVn356wO5Cu30XvhtFPcQ4WR1AFH2MAc19kjMTo9LtqiNHpYnJ6Cnt1-kH3QXfWpn8BHBD4oQ</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Wang, Mengyang</creator><creator>Wang, Hui</creator><creator>Wang, Jiao</creator><creator>Liu, Hongwei</creator><creator>Lu, Rui</creator><creator>Duan, Tongqing</creator><creator>Gong, Xiaowen</creator><creator>Feng, Siyuan</creator><creator>Liu, Yuanyuan</creator><creator>Cui, Zhuang</creator><creator>Li, Changping</creator><creator>Ma, Jun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8690-6748</orcidid></search><sort><creationdate>20191226</creationdate><title>A novel model for malaria prediction based on ensemble algorithms</title><author>Wang, Mengyang ; Wang, Hui ; Wang, Jiao ; Liu, Hongwei ; Lu, Rui ; Duan, Tongqing ; Gong, Xiaowen ; Feng, Siyuan ; Liu, Yuanyuan ; Cui, Zhuang ; Li, Changping ; Ma, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6bd63607dceea205ef78cccc2fff3ca1c5a9ddb3e573410d1dd3306f79ff03aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Architecture</topic><topic>Atmospheric models</topic><topic>Biology and Life Sciences</topic><topic>China - epidemiology</topic><topic>Communicable diseases</topic><topic>Communicable Diseases - epidemiology</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Deep Learning</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infectious diseases</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Malaria</topic><topic>Malaria - epidemiology</topic><topic>Medicine and Health Sciences</topic><topic>Meteorological data</topic><topic>Neural networks</topic><topic>Novels</topic><topic>People and Places</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Stacking</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Teaching methods</topic><topic>Time series</topic><topic>Vector-borne diseases</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengyang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><creatorcontrib>Lu, Rui</creatorcontrib><creatorcontrib>Duan, Tongqing</creatorcontrib><creatorcontrib>Gong, Xiaowen</creatorcontrib><creatorcontrib>Feng, Siyuan</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Zhuang</creatorcontrib><creatorcontrib>Li, Changping</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengyang</au><au>Wang, Hui</au><au>Wang, Jiao</au><au>Liu, Hongwei</au><au>Lu, Rui</au><au>Duan, Tongqing</au><au>Gong, Xiaowen</au><au>Feng, Siyuan</au><au>Liu, Yuanyuan</au><au>Cui, Zhuang</au><au>Li, Changping</au><au>Ma, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model for malaria prediction based on ensemble algorithms</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>14</volume><issue>12</issue><spage>e0226910</spage><epage>e0226910</epage><pages>e0226910-e0226910</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms and models. This study compares the performance of traditional time series models and deep learning algorithms in malaria case prediction and explores the application value of stacking methods in the field of infectious disease prediction. The ARIMA, STL+ARIMA, BP-ANN and LSTM network models were separately applied in simulations using malaria data and meteorological data in Yunnan Province from 2011 to 2017. We compared the predictive performance of each model through evaluation measures: RMSE, MASE, MAD. In addition, gradient-boosting regression trees (GBRTs) were used to combine the above four models. We also determined whether stacking structure improved the model prediction performance. The root mean square errors (RMSEs) of the four sub-models were 13.176, 14.543, 9.571 and 7.208; the mean absolute scaled errors (MASEs) were 0.469, 0.472, 0.296 and 0.266 and the mean absolute deviation (MAD) were 6.403, 7.658, 5.871 and 5.691. After using the stacking architecture combined with the above four models, the RMSE, MASE and MAD values of the ensemble model decreased to 6.810, 0.224 and 4.625, respectively. A novel ensemble model based on the robustness of structured prediction and model combination through stacking was developed. The findings suggest that the predictive performance of the final model is superior to that of the other four sub-models, indicating that stacking architecture may have significant implications in infectious disease prediction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31877185</pmid><doi>10.1371/journal.pone.0226910</doi><tpages>e0226910</tpages><orcidid>https://orcid.org/0000-0002-8690-6748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-12, Vol.14 (12), p.e0226910-e0226910
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2330772090
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Architecture
Atmospheric models
Biology and Life Sciences
China - epidemiology
Communicable diseases
Communicable Diseases - epidemiology
Computer and Information Sciences
Computer simulation
Data mining
Data structures
Deep Learning
Epidemics
Humans
Incidence
Infectious diseases
Learning algorithms
Machine learning
Malaria
Malaria - epidemiology
Medicine and Health Sciences
Meteorological data
Neural networks
Novels
People and Places
Performance prediction
Physical Sciences
Precipitation
Public health
Regression analysis
Research and Analysis Methods
Stacking
Statistical analysis
Studies
Teaching methods
Time series
Vector-borne diseases
Weather
title A novel model for malaria prediction based on ensemble algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model%20for%20malaria%20prediction%20based%20on%20ensemble%20algorithms&rft.jtitle=PloS%20one&rft.au=Wang,%20Mengyang&rft.date=2019-12-26&rft.volume=14&rft.issue=12&rft.spage=e0226910&rft.epage=e0226910&rft.pages=e0226910-e0226910&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0226910&rft_dat=%3Cgale_plos_%3EA609782070%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330772090&rft_id=info:pmid/31877185&rft_galeid=A609782070&rft_doaj_id=oai_doaj_org_article_4768565100c44f23aedfb15fdd993df4&rfr_iscdi=true