Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias
Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-11, Vol.17 (11), p.e3000481-e3000481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3000481 |
---|---|
container_issue | 11 |
container_start_page | e3000481 |
container_title | PLoS biology |
container_volume | 17 |
creator | Mandelboum, Shir Manber, Zohar Elroy-Stein, Orna Elkon, Ran |
description | Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data. |
doi_str_mv | 10.1371/journal.pbio.3000481 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2327556245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607431082</galeid><doaj_id>oai_doaj_org_article_729785b16fb243acafd7dc009b33414c</doaj_id><sourcerecordid>A607431082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</originalsourceid><addsrcrecordid>eNqVk8tq3DAUhk1padK0b1BaQzftwlNdLWtTGEIvAyGB6WUrZPnIUfBYjmSX5u0rd5yQKVm0CCFx9J1f0i-dLHuJ0QpTgd9f-Sn0ulsNtfMrihBiFX6UHWPOeCGqij--Nz_KnsV4hRAhklRPsyOKBWaSyuNMb8FMIUA_5nbqzeh80sx3Lrp-hDAEGPUcy73Nt-frIsJ13uhR50ZPEZq8vsmj3g0dFHEA46wzeQs95B307XiZ107H59kTq7sIL5bxJPv-6eO30y_F2cXnzen6rDCl5GNBhC6xLo2QgmlrQRrLMWN1JRqrkUG2rGSFuSB1KXCJDQiQNbNS8tSJofQke73XHTof1eJOVIQSwXlJGE_EZk80Xl-pIbidDjfKa6f-BHxolQ6jMx0oQaSoeI1LWxNGtdG2EY1BSNaUMsxM0vqw7DbVO2hMMjDo7kD0cKV3l6r1P1VZccTJfNy3i0Dw1xPEUSXTDXSd7sFP87kxI5xRihL65i_04dstVKvTBVxvfdrXzKJqXSLBKEYVSdTqASq1BnbO-B6sS_GDhHcHCYkZ4dfYpvePavN1-x_s-b-zFz8OWbZnTfAxBrB3PmOk5mK4NUTNxaCWYkhpr-6_0V3S7e-nvwF6gQQN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327556245</pqid></control><display><type>article</type><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran</creator><contributor>Huang, Sui</contributor><creatorcontrib>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran ; Huang, Sui</creatorcontrib><description>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000481</identifier><identifier>PMID: 31714939</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Bias ; Biochemistry ; Biology and life sciences ; Databases, Genetic ; Datasets ; Datasets as Topic ; Enrichment ; Extracellular matrix ; Gene expression ; Gene sequencing ; Gene set enrichment analysis ; Genes ; Genetic research ; Humans ; Impact analysis ; Inspection ; Life sciences ; Medical research ; Medicine and Health Sciences ; Meta ; Mice ; Neurosciences ; Physical Sciences ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA sequencing ; Sequence Analysis, RNA - standards ; Software ; Statistical methods ; Stochasticity ; Transcription ; Transcriptome</subject><ispartof>PLoS biology, 2019-11, Vol.17 (11), p.e3000481-e3000481</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Mandelboum et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Mandelboum et al 2019 Mandelboum et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</citedby><cites>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</cites><orcidid>0000-0002-3716-1540 ; 0000-0003-3440-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850523/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850523/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31714939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Huang, Sui</contributor><creatorcontrib>Mandelboum, Shir</creatorcontrib><creatorcontrib>Manber, Zohar</creatorcontrib><creatorcontrib>Elroy-Stein, Orna</creatorcontrib><creatorcontrib>Elkon, Ran</creatorcontrib><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</description><subject>Analysis</subject><subject>Animals</subject><subject>Bias</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Enrichment</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Gene set enrichment analysis</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>Inspection</subject><subject>Life sciences</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meta</subject><subject>Mice</subject><subject>Neurosciences</subject><subject>Physical Sciences</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA sequencing</subject><subject>Sequence Analysis, RNA - standards</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8tq3DAUhk1padK0b1BaQzftwlNdLWtTGEIvAyGB6WUrZPnIUfBYjmSX5u0rd5yQKVm0CCFx9J1f0i-dLHuJ0QpTgd9f-Sn0ulsNtfMrihBiFX6UHWPOeCGqij--Nz_KnsV4hRAhklRPsyOKBWaSyuNMb8FMIUA_5nbqzeh80sx3Lrp-hDAEGPUcy73Nt-frIsJ13uhR50ZPEZq8vsmj3g0dFHEA46wzeQs95B307XiZ107H59kTq7sIL5bxJPv-6eO30y_F2cXnzen6rDCl5GNBhC6xLo2QgmlrQRrLMWN1JRqrkUG2rGSFuSB1KXCJDQiQNbNS8tSJofQke73XHTof1eJOVIQSwXlJGE_EZk80Xl-pIbidDjfKa6f-BHxolQ6jMx0oQaSoeI1LWxNGtdG2EY1BSNaUMsxM0vqw7DbVO2hMMjDo7kD0cKV3l6r1P1VZccTJfNy3i0Dw1xPEUSXTDXSd7sFP87kxI5xRihL65i_04dstVKvTBVxvfdrXzKJqXSLBKEYVSdTqASq1BnbO-B6sS_GDhHcHCYkZ4dfYpvePavN1-x_s-b-zFz8OWbZnTfAxBrB3PmOk5mK4NUTNxaCWYkhpr-6_0V3S7e-nvwF6gQQN</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Mandelboum, Shir</creator><creator>Manber, Zohar</creator><creator>Elroy-Stein, Orna</creator><creator>Elkon, Ran</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-3716-1540</orcidid><orcidid>https://orcid.org/0000-0003-3440-1286</orcidid></search><sort><creationdate>20191112</creationdate><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><author>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Bias</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Enrichment</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Gene set enrichment analysis</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>Inspection</topic><topic>Life sciences</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meta</topic><topic>Mice</topic><topic>Neurosciences</topic><topic>Physical Sciences</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA sequencing</topic><topic>Sequence Analysis, RNA - standards</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandelboum, Shir</creatorcontrib><creatorcontrib>Manber, Zohar</creatorcontrib><creatorcontrib>Elroy-Stein, Orna</creatorcontrib><creatorcontrib>Elkon, Ran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandelboum, Shir</au><au>Manber, Zohar</au><au>Elroy-Stein, Orna</au><au>Elkon, Ran</au><au>Huang, Sui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>17</volume><issue>11</issue><spage>e3000481</spage><epage>e3000481</epage><pages>e3000481-e3000481</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31714939</pmid><doi>10.1371/journal.pbio.3000481</doi><orcidid>https://orcid.org/0000-0002-3716-1540</orcidid><orcidid>https://orcid.org/0000-0003-3440-1286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2019-11, Vol.17 (11), p.e3000481-e3000481 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2327556245 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Animals Bias Biochemistry Biology and life sciences Databases, Genetic Datasets Datasets as Topic Enrichment Extracellular matrix Gene expression Gene sequencing Gene set enrichment analysis Genes Genetic research Humans Impact analysis Inspection Life sciences Medical research Medicine and Health Sciences Meta Mice Neurosciences Physical Sciences Research and analysis methods Ribonucleic acid RNA RNA - chemistry RNA sequencing Sequence Analysis, RNA - standards Software Statistical methods Stochasticity Transcription Transcriptome |
title | Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20functional%20misinterpretation%20of%20RNA-seq%20data%20caused%20by%20sample-specific%20gene%20length%20bias&rft.jtitle=PLoS%20biology&rft.au=Mandelboum,%20Shir&rft.date=2019-11-12&rft.volume=17&rft.issue=11&rft.spage=e3000481&rft.epage=e3000481&rft.pages=e3000481-e3000481&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000481&rft_dat=%3Cgale_plos_%3EA607431082%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327556245&rft_id=info:pmid/31714939&rft_galeid=A607431082&rft_doaj_id=oai_doaj_org_article_729785b16fb243acafd7dc009b33414c&rfr_iscdi=true |