Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias

Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2019-11, Vol.17 (11), p.e3000481-e3000481
Hauptverfasser: Mandelboum, Shir, Manber, Zohar, Elroy-Stein, Orna, Elkon, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000481
container_issue 11
container_start_page e3000481
container_title PLoS biology
container_volume 17
creator Mandelboum, Shir
Manber, Zohar
Elroy-Stein, Orna
Elkon, Ran
description Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.
doi_str_mv 10.1371/journal.pbio.3000481
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2327556245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607431082</galeid><doaj_id>oai_doaj_org_article_729785b16fb243acafd7dc009b33414c</doaj_id><sourcerecordid>A607431082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</originalsourceid><addsrcrecordid>eNqVk8tq3DAUhk1padK0b1BaQzftwlNdLWtTGEIvAyGB6WUrZPnIUfBYjmSX5u0rd5yQKVm0CCFx9J1f0i-dLHuJ0QpTgd9f-Sn0ulsNtfMrihBiFX6UHWPOeCGqij--Nz_KnsV4hRAhklRPsyOKBWaSyuNMb8FMIUA_5nbqzeh80sx3Lrp-hDAEGPUcy73Nt-frIsJ13uhR50ZPEZq8vsmj3g0dFHEA46wzeQs95B307XiZ107H59kTq7sIL5bxJPv-6eO30y_F2cXnzen6rDCl5GNBhC6xLo2QgmlrQRrLMWN1JRqrkUG2rGSFuSB1KXCJDQiQNbNS8tSJofQke73XHTof1eJOVIQSwXlJGE_EZk80Xl-pIbidDjfKa6f-BHxolQ6jMx0oQaSoeI1LWxNGtdG2EY1BSNaUMsxM0vqw7DbVO2hMMjDo7kD0cKV3l6r1P1VZccTJfNy3i0Dw1xPEUSXTDXSd7sFP87kxI5xRihL65i_04dstVKvTBVxvfdrXzKJqXSLBKEYVSdTqASq1BnbO-B6sS_GDhHcHCYkZ4dfYpvePavN1-x_s-b-zFz8OWbZnTfAxBrB3PmOk5mK4NUTNxaCWYkhpr-6_0V3S7e-nvwF6gQQN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327556245</pqid></control><display><type>article</type><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran</creator><contributor>Huang, Sui</contributor><creatorcontrib>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran ; Huang, Sui</creatorcontrib><description>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000481</identifier><identifier>PMID: 31714939</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Bias ; Biochemistry ; Biology and life sciences ; Databases, Genetic ; Datasets ; Datasets as Topic ; Enrichment ; Extracellular matrix ; Gene expression ; Gene sequencing ; Gene set enrichment analysis ; Genes ; Genetic research ; Humans ; Impact analysis ; Inspection ; Life sciences ; Medical research ; Medicine and Health Sciences ; Meta ; Mice ; Neurosciences ; Physical Sciences ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA sequencing ; Sequence Analysis, RNA - standards ; Software ; Statistical methods ; Stochasticity ; Transcription ; Transcriptome</subject><ispartof>PLoS biology, 2019-11, Vol.17 (11), p.e3000481-e3000481</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Mandelboum et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Mandelboum et al 2019 Mandelboum et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</citedby><cites>FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</cites><orcidid>0000-0002-3716-1540 ; 0000-0003-3440-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850523/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850523/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31714939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Huang, Sui</contributor><creatorcontrib>Mandelboum, Shir</creatorcontrib><creatorcontrib>Manber, Zohar</creatorcontrib><creatorcontrib>Elroy-Stein, Orna</creatorcontrib><creatorcontrib>Elkon, Ran</creatorcontrib><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</description><subject>Analysis</subject><subject>Animals</subject><subject>Bias</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Enrichment</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Gene set enrichment analysis</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>Inspection</subject><subject>Life sciences</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meta</subject><subject>Mice</subject><subject>Neurosciences</subject><subject>Physical Sciences</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA sequencing</subject><subject>Sequence Analysis, RNA - standards</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8tq3DAUhk1padK0b1BaQzftwlNdLWtTGEIvAyGB6WUrZPnIUfBYjmSX5u0rd5yQKVm0CCFx9J1f0i-dLHuJ0QpTgd9f-Sn0ulsNtfMrihBiFX6UHWPOeCGqij--Nz_KnsV4hRAhklRPsyOKBWaSyuNMb8FMIUA_5nbqzeh80sx3Lrp-hDAEGPUcy73Nt-frIsJ13uhR50ZPEZq8vsmj3g0dFHEA46wzeQs95B307XiZ107H59kTq7sIL5bxJPv-6eO30y_F2cXnzen6rDCl5GNBhC6xLo2QgmlrQRrLMWN1JRqrkUG2rGSFuSB1KXCJDQiQNbNS8tSJofQke73XHTof1eJOVIQSwXlJGE_EZk80Xl-pIbidDjfKa6f-BHxolQ6jMx0oQaSoeI1LWxNGtdG2EY1BSNaUMsxM0vqw7DbVO2hMMjDo7kD0cKV3l6r1P1VZccTJfNy3i0Dw1xPEUSXTDXSd7sFP87kxI5xRihL65i_04dstVKvTBVxvfdrXzKJqXSLBKEYVSdTqASq1BnbO-B6sS_GDhHcHCYkZ4dfYpvePavN1-x_s-b-zFz8OWbZnTfAxBrB3PmOk5mK4NUTNxaCWYkhpr-6_0V3S7e-nvwF6gQQN</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Mandelboum, Shir</creator><creator>Manber, Zohar</creator><creator>Elroy-Stein, Orna</creator><creator>Elkon, Ran</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-3716-1540</orcidid><orcidid>https://orcid.org/0000-0003-3440-1286</orcidid></search><sort><creationdate>20191112</creationdate><title>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</title><author>Mandelboum, Shir ; Manber, Zohar ; Elroy-Stein, Orna ; Elkon, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-27a61a6c7974affe9cf5144b87dfa0c0f68981572b67161ce7e9b4f995f992c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Bias</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Enrichment</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Gene set enrichment analysis</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>Inspection</topic><topic>Life sciences</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meta</topic><topic>Mice</topic><topic>Neurosciences</topic><topic>Physical Sciences</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA sequencing</topic><topic>Sequence Analysis, RNA - standards</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandelboum, Shir</creatorcontrib><creatorcontrib>Manber, Zohar</creatorcontrib><creatorcontrib>Elroy-Stein, Orna</creatorcontrib><creatorcontrib>Elkon, Ran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandelboum, Shir</au><au>Manber, Zohar</au><au>Elroy-Stein, Orna</au><au>Elkon, Ran</au><au>Huang, Sui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>17</volume><issue>11</issue><spage>e3000481</spage><epage>e3000481</epage><pages>e3000481-e3000481</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Data normalization is a critical step in RNA sequencing (RNA-seq) analysis, aiming to remove systematic effects from the data to ensure that technical biases have minimal impact on the results. Analyzing numerous RNA-seq datasets, we detected a prevalent sample-specific length effect that leads to a strong association between gene length and fold-change estimates between samples. This stochastic sample-specific effect is not corrected by common normalization methods, including reads per kilobase of transcript length per million reads (RPKM), Trimmed Mean of M values (TMM), relative log expression (RLE), and quantile and upper-quartile normalization. Importantly, we demonstrate that this bias causes recurrent false positive calls by gene-set enrichment analysis (GSEA) methods, thereby leading to frequent functional misinterpretation of the data. Gene sets characterized by markedly short genes (e.g., ribosomal protein genes) or long genes (e.g., extracellular matrix genes) are particularly prone to such false calls. This sample-specific length bias is effectively removed by the conditional quantile normalization (cqn) and EDASeq methods, which allow the integration of gene length as a sample-specific covariate. Consequently, using these normalization methods led to substantial reduction in GSEA false results while retaining true ones. In addition, we found that application of gene-set tests that take into account gene-gene correlations attenuates false positive rates caused by the length bias, but statistical power is reduced as well. Our results advocate the inspection and correction of sample-specific length biases as default steps in RNA-seq analysis pipelines and reiterate the need to account for intergene correlations when performing gene-set enrichment tests to lessen false interpretation of transcriptomic data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31714939</pmid><doi>10.1371/journal.pbio.3000481</doi><orcidid>https://orcid.org/0000-0002-3716-1540</orcidid><orcidid>https://orcid.org/0000-0003-3440-1286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2019-11, Vol.17 (11), p.e3000481-e3000481
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2327556245
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animals
Bias
Biochemistry
Biology and life sciences
Databases, Genetic
Datasets
Datasets as Topic
Enrichment
Extracellular matrix
Gene expression
Gene sequencing
Gene set enrichment analysis
Genes
Genetic research
Humans
Impact analysis
Inspection
Life sciences
Medical research
Medicine and Health Sciences
Meta
Mice
Neurosciences
Physical Sciences
Research and analysis methods
Ribonucleic acid
RNA
RNA - chemistry
RNA sequencing
Sequence Analysis, RNA - standards
Software
Statistical methods
Stochasticity
Transcription
Transcriptome
title Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20functional%20misinterpretation%20of%20RNA-seq%20data%20caused%20by%20sample-specific%20gene%20length%20bias&rft.jtitle=PLoS%20biology&rft.au=Mandelboum,%20Shir&rft.date=2019-11-12&rft.volume=17&rft.issue=11&rft.spage=e3000481&rft.epage=e3000481&rft.pages=e3000481-e3000481&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000481&rft_dat=%3Cgale_plos_%3EA607431082%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327556245&rft_id=info:pmid/31714939&rft_galeid=A607431082&rft_doaj_id=oai_doaj_org_article_729785b16fb243acafd7dc009b33414c&rfr_iscdi=true