Feature identification in time-indexed model output

We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-12, Vol.14 (12), p.e0225439-e0225439
Hauptverfasser: Shaw, Justin, Stastna, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0225439
container_issue 12
container_start_page e0225439
container_title PloS one
container_volume 14
creator Shaw, Justin
Stastna, Marek
description We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.
doi_str_mv 10.1371/journal.pone.0225439
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2321618713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607540193</galeid><doaj_id>oai_doaj_org_article_27813a354ed841c488ce0bb80c5fe8dd</doaj_id><sourcerecordid>A607540193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5cb3161edc347dd3fe4f5e22efcadfaa5cad45f74d0c5f988eb0fca3404e3c163</originalsourceid><addsrcrecordid>eNqNkstq3DAUhk1paZJp36C0A4XSLjzV1ZY3hRCadiAQ6G0rZOloRoNtTS25pG8fOeOEccmiaCEhfec_F_1Z9gqjFaYl_rjzQ9-pZrX3HawQIZzR6kl2iitK8oIg-vTofJKdhbBDiFNRFM-zE4oFQgVhpxm9BBWHHpbOQBeddVpF57ul65bRtZC7zsANmGXrDTRLP8T9EF9kz6xqAryc9kX28_Lzj4uv-dX1l_XF-VWui4rEnOua4gKD0ZSVxlALzHIgBKxWxirF08a4LZlBmttKCKhReqIMMaAaF3SRvTno7hsf5NRvkISSJCtKTBOxPhDGq53c965V_V_plZN3F77fSNVHpxuQpBSYKsoZGMGwZkJoQHUtxtwgUnmL7NOUbajbVHQaR6-amej8pXNbufF_ZCEqwjlKAu8ngd7_HiBE2bqgoWlUB364q5vg1BzhCX37D_p4dxO1UakB11mf8upRVJ4XqOQMpQ9O1OoRKi0DrdPJHNal-1nAh1lAYiLcxI0aQpDr79_-n73-NWffHbFbUE3cBt8Mo5_CHGQHUPc-hB7sw5AxkqO376chR2_Lydsp7PXxBz0E3ZuZ3gIpr_Py</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321618713</pqid></control><display><type>article</type><title>Feature identification in time-indexed model output</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shaw, Justin ; Stastna, Marek</creator><contributor>Mortazavi, Bobak</contributor><creatorcontrib>Shaw, Justin ; Stastna, Marek ; Mortazavi, Bobak</creatorcontrib><description>We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0225439</identifier><identifier>PMID: 31800624</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Applied mathematics ; Computational fluid dynamics ; Computer applications ; Datasets ; Decomposition ; Diagnostic systems ; Earth sciences ; Empirical analysis ; Engineering and Technology ; Fluid dynamics ; Fluid mechanics ; Fluids ; Hydrodynamics ; Identification ; Internal waves ; Linear algebra ; Mathematical models ; Methods ; Models, Theoretical ; Numerical analysis ; Oceanography ; Orthogonal functions ; Physical Sciences ; Principal components analysis ; Research and Analysis Methods ; Solitary waves ; Time</subject><ispartof>PloS one, 2019-12, Vol.14 (12), p.e0225439-e0225439</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Shaw, Stastna. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Shaw, Stastna 2019 Shaw, Stastna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5cb3161edc347dd3fe4f5e22efcadfaa5cad45f74d0c5f988eb0fca3404e3c163</citedby><cites>FETCH-LOGICAL-c692t-5cb3161edc347dd3fe4f5e22efcadfaa5cad45f74d0c5f988eb0fca3404e3c163</cites><orcidid>0000-0001-5475-9942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892550/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31800624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mortazavi, Bobak</contributor><creatorcontrib>Shaw, Justin</creatorcontrib><creatorcontrib>Stastna, Marek</creatorcontrib><title>Feature identification in time-indexed model output</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Diagnostic systems</subject><subject>Earth sciences</subject><subject>Empirical analysis</subject><subject>Engineering and Technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Hydrodynamics</subject><subject>Identification</subject><subject>Internal waves</subject><subject>Linear algebra</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Numerical analysis</subject><subject>Oceanography</subject><subject>Orthogonal functions</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Solitary waves</subject><subject>Time</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstq3DAUhk1paZJp36C0A4XSLjzV1ZY3hRCadiAQ6G0rZOloRoNtTS25pG8fOeOEccmiaCEhfec_F_1Z9gqjFaYl_rjzQ9-pZrX3HawQIZzR6kl2iitK8oIg-vTofJKdhbBDiFNRFM-zE4oFQgVhpxm9BBWHHpbOQBeddVpF57ul65bRtZC7zsANmGXrDTRLP8T9EF9kz6xqAryc9kX28_Lzj4uv-dX1l_XF-VWui4rEnOua4gKD0ZSVxlALzHIgBKxWxirF08a4LZlBmttKCKhReqIMMaAaF3SRvTno7hsf5NRvkISSJCtKTBOxPhDGq53c965V_V_plZN3F77fSNVHpxuQpBSYKsoZGMGwZkJoQHUtxtwgUnmL7NOUbajbVHQaR6-amej8pXNbufF_ZCEqwjlKAu8ngd7_HiBE2bqgoWlUB364q5vg1BzhCX37D_p4dxO1UakB11mf8upRVJ4XqOQMpQ9O1OoRKi0DrdPJHNal-1nAh1lAYiLcxI0aQpDr79_-n73-NWffHbFbUE3cBt8Mo5_CHGQHUPc-hB7sw5AxkqO376chR2_Lydsp7PXxBz0E3ZuZ3gIpr_Py</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Shaw, Justin</creator><creator>Stastna, Marek</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5475-9942</orcidid></search><sort><creationdate>20191204</creationdate><title>Feature identification in time-indexed model output</title><author>Shaw, Justin ; Stastna, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5cb3161edc347dd3fe4f5e22efcadfaa5cad45f74d0c5f988eb0fca3404e3c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Diagnostic systems</topic><topic>Earth sciences</topic><topic>Empirical analysis</topic><topic>Engineering and Technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Hydrodynamics</topic><topic>Identification</topic><topic>Internal waves</topic><topic>Linear algebra</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Numerical analysis</topic><topic>Oceanography</topic><topic>Orthogonal functions</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Solitary waves</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Justin</creatorcontrib><creatorcontrib>Stastna, Marek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Justin</au><au>Stastna, Marek</au><au>Mortazavi, Bobak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature identification in time-indexed model output</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-12-04</date><risdate>2019</risdate><volume>14</volume><issue>12</issue><spage>e0225439</spage><epage>e0225439</epage><pages>e0225439-e0225439</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31800624</pmid><doi>10.1371/journal.pone.0225439</doi><tpages>e0225439</tpages><orcidid>https://orcid.org/0000-0001-5475-9942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-12, Vol.14 (12), p.e0225439-e0225439
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2321618713
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Applied mathematics
Computational fluid dynamics
Computer applications
Datasets
Decomposition
Diagnostic systems
Earth sciences
Empirical analysis
Engineering and Technology
Fluid dynamics
Fluid mechanics
Fluids
Hydrodynamics
Identification
Internal waves
Linear algebra
Mathematical models
Methods
Models, Theoretical
Numerical analysis
Oceanography
Orthogonal functions
Physical Sciences
Principal components analysis
Research and Analysis Methods
Solitary waves
Time
title Feature identification in time-indexed model output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20identification%20in%20time-indexed%20model%20output&rft.jtitle=PloS%20one&rft.au=Shaw,%20Justin&rft.date=2019-12-04&rft.volume=14&rft.issue=12&rft.spage=e0225439&rft.epage=e0225439&rft.pages=e0225439-e0225439&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0225439&rft_dat=%3Cgale_plos_%3EA607540193%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321618713&rft_id=info:pmid/31800624&rft_galeid=A607540193&rft_doaj_id=oai_doaj_org_article_27813a354ed841c488ce0bb80c5fe8dd&rfr_iscdi=true