Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions

In this study, we used liquid chromatography high-resolution tandem mass spectrometry to analyze the lipidome of turtlegrass (Thalassia testudinum) leaves with either extremely high phosphorus content or extremely low phosphorus content. Most species of phospholipids were significantly down-regulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-11, Vol.14 (11), p.e0218690-e0218690
Hauptverfasser: Koelmel, Jeremy P, Campbell, Justin E, Guingab-Cagmat, Joy, Meke, Laurel, Garrett, Timothy J, Stingl, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0218690
container_issue 11
container_start_page e0218690
container_title PloS one
container_volume 14
creator Koelmel, Jeremy P
Campbell, Justin E
Guingab-Cagmat, Joy
Meke, Laurel
Garrett, Timothy J
Stingl, Ulrich
description In this study, we used liquid chromatography high-resolution tandem mass spectrometry to analyze the lipidome of turtlegrass (Thalassia testudinum) leaves with either extremely high phosphorus content or extremely low phosphorus content. Most species of phospholipids were significantly down-regulated in phosphorus-deplete leaves, whereas diacylglyceryltrimethylhomoserine (DGTS), triglycerides (TG), galactolipid digalactosyldiacylglycerol (DGDG), certain species of glucuronosyldiacylglycerols (GlcADG), and certain species of sulfoquinovosyl diacylglycerol (SQDG) were significantly upregulated, accounting for the change in phosphorus content, as well as structural differences in the leaves of plants growing across regions of varying elemental availability. These data suggest that seagrasses are able to modify the phosphorus content in leaf membranes dependent upon environmental availability.
doi_str_mv 10.1371/journal.pone.0218690
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2319191251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606915571</galeid><doaj_id>oai_doaj_org_article_1f2a8348dfd0470998ef6e344ee44b1b</doaj_id><sourcerecordid>A606915571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-502bc2af11ad99542a95ee7118e489a7c460834da05e958fc1cddd3baba551083</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F95KtmRbN4UQelgIBNLDrRhbI6-CbG0ku2nfvtqsE9YlF0UIiZlv_pFGmiR5ScmKFhX9cOUmP4Bdbd2AK5LTuhTkUXJMRZFnZU6Kxwf7o-RZCFeE8KIuy6fJUUGritWUHSf6ErPeKbRm6FKnU-2sAZ_22DceBkyt2RoVUjOkkAaEzkMIKVjrbkJkfdp5dzNudv7txoU4_RQyhVuLI6atG5QZjRvC8-SJBhvwxbyeJD8-f_p-9jU7v_iyPjs9z9pS5GPGSd60OWhKQQnBWQ6CI1aU1shqAVXLSlIXTAHhKHitW9oqpYoGGuCcRtdJ8nqvu7UuyLlEQeYFFXHknEZivSeUgyu59aYH_0c6MPLW4HwnwY-mtSipziFmq5VWhFVEiBp1iQVjiIw1tIlaH-dsU9OjanEYPdiF6NIzmI3s3C9Z1jURVR4F3s0C3l1PGEbZm9CitbH0btqfmxNKaBHRN_-gD99upjqIFzCDdjFvuxOVpyUpBeW82lGrB6g4FPYmPhpqE-2LgPeLgMiM-HvsYApBrr9d_j978XPJvj1gNwh23ARnp9s_swTZHmy9C8Gjvi8yJXLXDnfVkLt2kHM7xLBXhw90H3T3_4u_IRkFqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319191251</pqid></control><display><type>article</type><title>Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Koelmel, Jeremy P ; Campbell, Justin E ; Guingab-Cagmat, Joy ; Meke, Laurel ; Garrett, Timothy J ; Stingl, Ulrich</creator><contributor>Mazzuca, Silvia</contributor><creatorcontrib>Koelmel, Jeremy P ; Campbell, Justin E ; Guingab-Cagmat, Joy ; Meke, Laurel ; Garrett, Timothy J ; Stingl, Ulrich ; Mazzuca, Silvia</creatorcontrib><description>In this study, we used liquid chromatography high-resolution tandem mass spectrometry to analyze the lipidome of turtlegrass (Thalassia testudinum) leaves with either extremely high phosphorus content or extremely low phosphorus content. Most species of phospholipids were significantly down-regulated in phosphorus-deplete leaves, whereas diacylglyceryltrimethylhomoserine (DGTS), triglycerides (TG), galactolipid digalactosyldiacylglycerol (DGDG), certain species of glucuronosyldiacylglycerols (GlcADG), and certain species of sulfoquinovosyl diacylglycerol (SQDG) were significantly upregulated, accounting for the change in phosphorus content, as well as structural differences in the leaves of plants growing across regions of varying elemental availability. These data suggest that seagrasses are able to modify the phosphorus content in leaf membranes dependent upon environmental availability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218690</identifier><identifier>PMID: 31774814</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accounting ; Aquatic Organisms - growth &amp; development ; Aquatic Organisms - metabolism ; Bioinformatics ; Biology and Life Sciences ; Biosynthesis ; Blood lipids ; Chromatography ; Chromatography, Liquid ; Computer and Information Sciences ; Depletion ; Diacylglycerol ; Diacylglyceryltrimethylhomoserine ; Diglycerides ; Hydrocharitaceae - growth &amp; development ; Hydrocharitaceae - metabolism ; Immunology ; Laboratories ; Leaves ; Lipidomics - methods ; Lipids ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Medical research ; Medical schools ; Medicine ; Membrane lipids ; Membrane Lipids - metabolism ; Membranes ; Pathology ; Phospholipids ; Phosphorus ; Phosphorus - metabolism ; Plant Leaves - growth &amp; development ; Plant Leaves - metabolism ; Plant lipids ; Scientific imaging ; Seagrasses ; Solvents ; Species ; Spectroscopy ; Tandem Mass Spectrometry ; Thalassia testudinum ; Triglycerides</subject><ispartof>PloS one, 2019-11, Vol.14 (11), p.e0218690-e0218690</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Koelmel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Koelmel et al 2019 Koelmel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-502bc2af11ad99542a95ee7118e489a7c460834da05e958fc1cddd3baba551083</citedby><cites>FETCH-LOGICAL-c692t-502bc2af11ad99542a95ee7118e489a7c460834da05e958fc1cddd3baba551083</cites><orcidid>0000-0002-0684-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880972/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6880972/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31774814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mazzuca, Silvia</contributor><creatorcontrib>Koelmel, Jeremy P</creatorcontrib><creatorcontrib>Campbell, Justin E</creatorcontrib><creatorcontrib>Guingab-Cagmat, Joy</creatorcontrib><creatorcontrib>Meke, Laurel</creatorcontrib><creatorcontrib>Garrett, Timothy J</creatorcontrib><creatorcontrib>Stingl, Ulrich</creatorcontrib><title>Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this study, we used liquid chromatography high-resolution tandem mass spectrometry to analyze the lipidome of turtlegrass (Thalassia testudinum) leaves with either extremely high phosphorus content or extremely low phosphorus content. Most species of phospholipids were significantly down-regulated in phosphorus-deplete leaves, whereas diacylglyceryltrimethylhomoserine (DGTS), triglycerides (TG), galactolipid digalactosyldiacylglycerol (DGDG), certain species of glucuronosyldiacylglycerols (GlcADG), and certain species of sulfoquinovosyl diacylglycerol (SQDG) were significantly upregulated, accounting for the change in phosphorus content, as well as structural differences in the leaves of plants growing across regions of varying elemental availability. These data suggest that seagrasses are able to modify the phosphorus content in leaf membranes dependent upon environmental availability.</description><subject>Accounting</subject><subject>Aquatic Organisms - growth &amp; development</subject><subject>Aquatic Organisms - metabolism</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Blood lipids</subject><subject>Chromatography</subject><subject>Chromatography, Liquid</subject><subject>Computer and Information Sciences</subject><subject>Depletion</subject><subject>Diacylglycerol</subject><subject>Diacylglyceryltrimethylhomoserine</subject><subject>Diglycerides</subject><subject>Hydrocharitaceae - growth &amp; development</subject><subject>Hydrocharitaceae - metabolism</subject><subject>Immunology</subject><subject>Laboratories</subject><subject>Leaves</subject><subject>Lipidomics - methods</subject><subject>Lipids</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Membrane lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membranes</subject><subject>Pathology</subject><subject>Phospholipids</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant lipids</subject><subject>Scientific imaging</subject><subject>Seagrasses</subject><subject>Solvents</subject><subject>Species</subject><subject>Spectroscopy</subject><subject>Tandem Mass Spectrometry</subject><subject>Thalassia testudinum</subject><subject>Triglycerides</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F95KtmRbN4UQelgIBNLDrRhbI6-CbG0ku2nfvtqsE9YlF0UIiZlv_pFGmiR5ScmKFhX9cOUmP4Bdbd2AK5LTuhTkUXJMRZFnZU6Kxwf7o-RZCFeE8KIuy6fJUUGritWUHSf6ErPeKbRm6FKnU-2sAZ_22DceBkyt2RoVUjOkkAaEzkMIKVjrbkJkfdp5dzNudv7txoU4_RQyhVuLI6atG5QZjRvC8-SJBhvwxbyeJD8-f_p-9jU7v_iyPjs9z9pS5GPGSd60OWhKQQnBWQ6CI1aU1shqAVXLSlIXTAHhKHitW9oqpYoGGuCcRtdJ8nqvu7UuyLlEQeYFFXHknEZivSeUgyu59aYH_0c6MPLW4HwnwY-mtSipziFmq5VWhFVEiBp1iQVjiIw1tIlaH-dsU9OjanEYPdiF6NIzmI3s3C9Z1jURVR4F3s0C3l1PGEbZm9CitbH0btqfmxNKaBHRN_-gD99upjqIFzCDdjFvuxOVpyUpBeW82lGrB6g4FPYmPhpqE-2LgPeLgMiM-HvsYApBrr9d_j978XPJvj1gNwh23ARnp9s_swTZHmy9C8Gjvi8yJXLXDnfVkLt2kHM7xLBXhw90H3T3_4u_IRkFqQ</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Koelmel, Jeremy P</creator><creator>Campbell, Justin E</creator><creator>Guingab-Cagmat, Joy</creator><creator>Meke, Laurel</creator><creator>Garrett, Timothy J</creator><creator>Stingl, Ulrich</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0684-2597</orcidid></search><sort><creationdate>20191127</creationdate><title>Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions</title><author>Koelmel, Jeremy P ; Campbell, Justin E ; Guingab-Cagmat, Joy ; Meke, Laurel ; Garrett, Timothy J ; Stingl, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-502bc2af11ad99542a95ee7118e489a7c460834da05e958fc1cddd3baba551083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accounting</topic><topic>Aquatic Organisms - growth &amp; development</topic><topic>Aquatic Organisms - metabolism</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Blood lipids</topic><topic>Chromatography</topic><topic>Chromatography, Liquid</topic><topic>Computer and Information Sciences</topic><topic>Depletion</topic><topic>Diacylglycerol</topic><topic>Diacylglyceryltrimethylhomoserine</topic><topic>Diglycerides</topic><topic>Hydrocharitaceae - growth &amp; development</topic><topic>Hydrocharitaceae - metabolism</topic><topic>Immunology</topic><topic>Laboratories</topic><topic>Leaves</topic><topic>Lipidomics - methods</topic><topic>Lipids</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Membrane lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membranes</topic><topic>Pathology</topic><topic>Phospholipids</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant lipids</topic><topic>Scientific imaging</topic><topic>Seagrasses</topic><topic>Solvents</topic><topic>Species</topic><topic>Spectroscopy</topic><topic>Tandem Mass Spectrometry</topic><topic>Thalassia testudinum</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koelmel, Jeremy P</creatorcontrib><creatorcontrib>Campbell, Justin E</creatorcontrib><creatorcontrib>Guingab-Cagmat, Joy</creatorcontrib><creatorcontrib>Meke, Laurel</creatorcontrib><creatorcontrib>Garrett, Timothy J</creatorcontrib><creatorcontrib>Stingl, Ulrich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koelmel, Jeremy P</au><au>Campbell, Justin E</au><au>Guingab-Cagmat, Joy</au><au>Meke, Laurel</au><au>Garrett, Timothy J</au><au>Stingl, Ulrich</au><au>Mazzuca, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-11-27</date><risdate>2019</risdate><volume>14</volume><issue>11</issue><spage>e0218690</spage><epage>e0218690</epage><pages>e0218690-e0218690</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this study, we used liquid chromatography high-resolution tandem mass spectrometry to analyze the lipidome of turtlegrass (Thalassia testudinum) leaves with either extremely high phosphorus content or extremely low phosphorus content. Most species of phospholipids were significantly down-regulated in phosphorus-deplete leaves, whereas diacylglyceryltrimethylhomoserine (DGTS), triglycerides (TG), galactolipid digalactosyldiacylglycerol (DGDG), certain species of glucuronosyldiacylglycerols (GlcADG), and certain species of sulfoquinovosyl diacylglycerol (SQDG) were significantly upregulated, accounting for the change in phosphorus content, as well as structural differences in the leaves of plants growing across regions of varying elemental availability. These data suggest that seagrasses are able to modify the phosphorus content in leaf membranes dependent upon environmental availability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31774814</pmid><doi>10.1371/journal.pone.0218690</doi><tpages>e0218690</tpages><orcidid>https://orcid.org/0000-0002-0684-2597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-11, Vol.14 (11), p.e0218690-e0218690
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2319191251
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accounting
Aquatic Organisms - growth & development
Aquatic Organisms - metabolism
Bioinformatics
Biology and Life Sciences
Biosynthesis
Blood lipids
Chromatography
Chromatography, Liquid
Computer and Information Sciences
Depletion
Diacylglycerol
Diacylglyceryltrimethylhomoserine
Diglycerides
Hydrocharitaceae - growth & development
Hydrocharitaceae - metabolism
Immunology
Laboratories
Leaves
Lipidomics - methods
Lipids
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Medical research
Medical schools
Medicine
Membrane lipids
Membrane Lipids - metabolism
Membranes
Pathology
Phospholipids
Phosphorus
Phosphorus - metabolism
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant lipids
Scientific imaging
Seagrasses
Solvents
Species
Spectroscopy
Tandem Mass Spectrometry
Thalassia testudinum
Triglycerides
title Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-modeling%20of%20foliar%20membrane%20lipids%20in%20a%20seagrass%20allows%20for%20growth%20in%20phosphorus-deplete%20conditions&rft.jtitle=PloS%20one&rft.au=Koelmel,%20Jeremy%20P&rft.date=2019-11-27&rft.volume=14&rft.issue=11&rft.spage=e0218690&rft.epage=e0218690&rft.pages=e0218690-e0218690&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218690&rft_dat=%3Cgale_plos_%3EA606915571%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319191251&rft_id=info:pmid/31774814&rft_galeid=A606915571&rft_doaj_id=oai_doaj_org_article_1f2a8348dfd0470998ef6e344ee44b1b&rfr_iscdi=true