Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials wit...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-11, Vol.14 (11), p.e0224904 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0224904 |
container_title | PloS one |
container_volume | 14 |
creator | Vazquez-Muñoz, R Meza-Villezcas, A Fournier, P G J Soria-Castro, E Juarez-Moreno, K Gallego-Hernández, A L Bogdanchikova, N Vazquez-Duhalt, R Huerta-Saquero, A |
description | The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: |
doi_str_mv | 10.1371/journal.pone.0224904 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2313066608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A605227857</galeid><doaj_id>oai_doaj_org_article_2cb8eccce29d4638828159b0695b1445</doaj_id><sourcerecordid>A605227857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0-RmYVlWHVhY8Os2JGkyzdAmY5IO7r83M9NdpqAgvWhIn3Py5vQUxWsIlhA38OPGj8GJfrn1Ti8BQhUD1ZPiHDKMFgQB_PRkfVa8iHEDQI0pIc-LMwwbgAGj58Vw4zrhlB60S6U3pXDJSuuTVfGwHqwKXlrRl0Ilu7PpvmxHXSZfpk6X0fY7HUonnN-KkEW9jqUdtpktvTsgSvd9OehBBuH0y-KZEX3Ur6b3RfHj08336y-L27vPq-ur24VqKpwWlBKhlAGAsLo1tEE1gZgYxVCNCZQtVhK3TAPTwoZlRCojCTSKItpKU2l8Ubw9-m57H_mUVOQIQwwIIYBmYnUkWi82fBvsIMI998Lyw4YPaz5diCMlqVZKacTaimCaT4E1k_vhJKyqOntdTqeNctCtylEG0c9M51-c7fja7zihmFGGs8G7ySD4X6OO6R8jT9Ra5KmsMz6bqcFGxa8IqBFqaN1kavkXKj-tzv8yd8XYvD8TfJgJMpP077QWY4x89e3r_7N3P-fs-xO206JPXfT9mKx3cQ5WRzA3LcagzWNyEPB91R_S4Puq86nqWfbmNPVH0UO38R81Efrx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313066608</pqid></control><display><type>article</type><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A</creator><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A ; Mishra, Yogendra Kumar</creatorcontrib><description>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0224904</identifier><identifier>PMID: 31703098</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amides ; Analysis ; Anti-Bacterial Agents - administration & dosage ; Anti-Bacterial Agents - pharmacology ; Anti-Infective Agents - pharmacology ; Antibacterial agents ; Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Bacteria ; Bacterial diseases ; Bacterial infections ; Beta lactam antibiotics ; Beta lactamases ; Biology and Life Sciences ; Cell Membrane - drug effects ; Cell Membrane - ultrastructure ; Cell Membrane Permeability ; Cell membranes ; Chemical interactions ; Chloramphenicol ; Chloromycetin ; Combinatorial analysis ; Drug resistance ; Drug Resistance, Microbial ; Drug therapy ; Flow cytometry ; Gram-negative bacteria ; Gram-positive bacteria ; Health aspects ; Infection ; Infection control ; Infections ; Kanamycin ; Laboratories ; Lactams ; Medicine and Health Sciences ; Membrane permeability ; Membrane potential ; Membrane Potentials - drug effects ; Metabolism ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Methods ; Microbial drug resistance ; Microbial Sensitivity Tests ; Microorganisms ; Multidrug resistance ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Organic chemistry ; Oxacillin ; Permeability ; Physical Sciences ; Povidone ; Public health ; Research and Analysis Methods ; Silver ; Silver - chemistry ; Staphylococcus infections ; β-Lactam antibiotics</subject><ispartof>PloS one, 2019-11, Vol.14 (11), p.e0224904</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Vazquez-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Vazquez-Muñoz et al 2019 Vazquez-Muñoz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</citedby><cites>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</cites><orcidid>0000-0002-0156-6773 ; 0000-0002-3847-1305 ; 0000-0002-6171-8601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31703098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Vazquez-Muñoz, R</creatorcontrib><creatorcontrib>Meza-Villezcas, A</creatorcontrib><creatorcontrib>Fournier, P G J</creatorcontrib><creatorcontrib>Soria-Castro, E</creatorcontrib><creatorcontrib>Juarez-Moreno, K</creatorcontrib><creatorcontrib>Gallego-Hernández, A L</creatorcontrib><creatorcontrib>Bogdanchikova, N</creatorcontrib><creatorcontrib>Vazquez-Duhalt, R</creatorcontrib><creatorcontrib>Huerta-Saquero, A</creatorcontrib><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</description><subject>Amides</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antibacterial agents</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Beta lactam antibiotics</subject><subject>Beta lactamases</subject><subject>Biology and Life Sciences</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell Membrane Permeability</subject><subject>Cell membranes</subject><subject>Chemical interactions</subject><subject>Chloramphenicol</subject><subject>Chloromycetin</subject><subject>Combinatorial analysis</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial</subject><subject>Drug therapy</subject><subject>Flow cytometry</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Health aspects</subject><subject>Infection</subject><subject>Infection control</subject><subject>Infections</subject><subject>Kanamycin</subject><subject>Laboratories</subject><subject>Lactams</subject><subject>Medicine and Health Sciences</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membrane Potentials - drug effects</subject><subject>Metabolism</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Methods</subject><subject>Microbial drug resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Microorganisms</subject><subject>Multidrug resistance</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Oxacillin</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Povidone</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Staphylococcus infections</subject><subject>β-Lactam antibiotics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0-RmYVlWHVhY8Os2JGkyzdAmY5IO7r83M9NdpqAgvWhIn3Py5vQUxWsIlhA38OPGj8GJfrn1Ti8BQhUD1ZPiHDKMFgQB_PRkfVa8iHEDQI0pIc-LMwwbgAGj58Vw4zrhlB60S6U3pXDJSuuTVfGwHqwKXlrRl0Ilu7PpvmxHXSZfpk6X0fY7HUonnN-KkEW9jqUdtpktvTsgSvd9OehBBuH0y-KZEX3Ur6b3RfHj08336y-L27vPq-ur24VqKpwWlBKhlAGAsLo1tEE1gZgYxVCNCZQtVhK3TAPTwoZlRCojCTSKItpKU2l8Ubw9-m57H_mUVOQIQwwIIYBmYnUkWi82fBvsIMI998Lyw4YPaz5diCMlqVZKacTaimCaT4E1k_vhJKyqOntdTqeNctCtylEG0c9M51-c7fja7zihmFGGs8G7ySD4X6OO6R8jT9Ra5KmsMz6bqcFGxa8IqBFqaN1kavkXKj-tzv8yd8XYvD8TfJgJMpP077QWY4x89e3r_7N3P-fs-xO206JPXfT9mKx3cQ5WRzA3LcagzWNyEPB91R_S4Puq86nqWfbmNPVH0UO38R81Efrx</recordid><startdate>20191108</startdate><enddate>20191108</enddate><creator>Vazquez-Muñoz, R</creator><creator>Meza-Villezcas, A</creator><creator>Fournier, P G J</creator><creator>Soria-Castro, E</creator><creator>Juarez-Moreno, K</creator><creator>Gallego-Hernández, A L</creator><creator>Bogdanchikova, N</creator><creator>Vazquez-Duhalt, R</creator><creator>Huerta-Saquero, A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0156-6773</orcidid><orcidid>https://orcid.org/0000-0002-3847-1305</orcidid><orcidid>https://orcid.org/0000-0002-6171-8601</orcidid></search><sort><creationdate>20191108</creationdate><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><author>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amides</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antibacterial agents</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Beta lactam antibiotics</topic><topic>Beta lactamases</topic><topic>Biology and Life Sciences</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell Membrane Permeability</topic><topic>Cell membranes</topic><topic>Chemical interactions</topic><topic>Chloramphenicol</topic><topic>Chloromycetin</topic><topic>Combinatorial analysis</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial</topic><topic>Drug therapy</topic><topic>Flow cytometry</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Health aspects</topic><topic>Infection</topic><topic>Infection control</topic><topic>Infections</topic><topic>Kanamycin</topic><topic>Laboratories</topic><topic>Lactams</topic><topic>Medicine and Health Sciences</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membrane Potentials - drug effects</topic><topic>Metabolism</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Methods</topic><topic>Microbial drug resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Microorganisms</topic><topic>Multidrug resistance</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Oxacillin</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Povidone</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Staphylococcus infections</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazquez-Muñoz, R</creatorcontrib><creatorcontrib>Meza-Villezcas, A</creatorcontrib><creatorcontrib>Fournier, P G J</creatorcontrib><creatorcontrib>Soria-Castro, E</creatorcontrib><creatorcontrib>Juarez-Moreno, K</creatorcontrib><creatorcontrib>Gallego-Hernández, A L</creatorcontrib><creatorcontrib>Bogdanchikova, N</creatorcontrib><creatorcontrib>Vazquez-Duhalt, R</creatorcontrib><creatorcontrib>Huerta-Saquero, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazquez-Muñoz, R</au><au>Meza-Villezcas, A</au><au>Fournier, P G J</au><au>Soria-Castro, E</au><au>Juarez-Moreno, K</au><au>Gallego-Hernández, A L</au><au>Bogdanchikova, N</au><au>Vazquez-Duhalt, R</au><au>Huerta-Saquero, A</au><au>Mishra, Yogendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-11-08</date><risdate>2019</risdate><volume>14</volume><issue>11</issue><spage>e0224904</spage><pages>e0224904-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31703098</pmid><doi>10.1371/journal.pone.0224904</doi><tpages>e0224904</tpages><orcidid>https://orcid.org/0000-0002-0156-6773</orcidid><orcidid>https://orcid.org/0000-0002-3847-1305</orcidid><orcidid>https://orcid.org/0000-0002-6171-8601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-11, Vol.14 (11), p.e0224904 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2313066608 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amides Analysis Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - pharmacology Anti-Infective Agents - pharmacology Antibacterial agents Antibiotic resistance Antibiotics Antiinfectives and antibacterials Antimicrobial activity Antimicrobial agents Bacteria Bacterial diseases Bacterial infections Beta lactam antibiotics Beta lactamases Biology and Life Sciences Cell Membrane - drug effects Cell Membrane - ultrastructure Cell Membrane Permeability Cell membranes Chemical interactions Chloramphenicol Chloromycetin Combinatorial analysis Drug resistance Drug Resistance, Microbial Drug therapy Flow cytometry Gram-negative bacteria Gram-positive bacteria Health aspects Infection Infection control Infections Kanamycin Laboratories Lactams Medicine and Health Sciences Membrane permeability Membrane potential Membrane Potentials - drug effects Metabolism Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Methods Microbial drug resistance Microbial Sensitivity Tests Microorganisms Multidrug resistance Nanomaterials Nanoparticles Nanotechnology Organic chemistry Oxacillin Permeability Physical Sciences Povidone Public health Research and Analysis Methods Silver Silver - chemistry Staphylococcus infections β-Lactam antibiotics |
title | Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20antibiotics%20antimicrobial%20activity%20due%20to%20the%20silver%20nanoparticles%20impact%20on%20the%20cell%20membrane&rft.jtitle=PloS%20one&rft.au=Vazquez-Mu%C3%B1oz,%20R&rft.date=2019-11-08&rft.volume=14&rft.issue=11&rft.spage=e0224904&rft.pages=e0224904-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0224904&rft_dat=%3Cgale_plos_%3EA605227857%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313066608&rft_id=info:pmid/31703098&rft_galeid=A605227857&rft_doaj_id=oai_doaj_org_article_2cb8eccce29d4638828159b0695b1445&rfr_iscdi=true |