Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane

The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-11, Vol.14 (11), p.e0224904
Hauptverfasser: Vazquez-Muñoz, R, Meza-Villezcas, A, Fournier, P G J, Soria-Castro, E, Juarez-Moreno, K, Gallego-Hernández, A L, Bogdanchikova, N, Vazquez-Duhalt, R, Huerta-Saquero, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0224904
container_title PloS one
container_volume 14
creator Vazquez-Muñoz, R
Meza-Villezcas, A
Fournier, P G J
Soria-Castro, E
Juarez-Moreno, K
Gallego-Hernández, A L
Bogdanchikova, N
Vazquez-Duhalt, R
Huerta-Saquero, A
description The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI:
doi_str_mv 10.1371/journal.pone.0224904
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2313066608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A605227857</galeid><doaj_id>oai_doaj_org_article_2cb8eccce29d4638828159b0695b1445</doaj_id><sourcerecordid>A605227857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0-RmYVlWHVhY8Os2JGkyzdAmY5IO7r83M9NdpqAgvWhIn3Py5vQUxWsIlhA38OPGj8GJfrn1Ti8BQhUD1ZPiHDKMFgQB_PRkfVa8iHEDQI0pIc-LMwwbgAGj58Vw4zrhlB60S6U3pXDJSuuTVfGwHqwKXlrRl0Ilu7PpvmxHXSZfpk6X0fY7HUonnN-KkEW9jqUdtpktvTsgSvd9OehBBuH0y-KZEX3Ur6b3RfHj08336y-L27vPq-ur24VqKpwWlBKhlAGAsLo1tEE1gZgYxVCNCZQtVhK3TAPTwoZlRCojCTSKItpKU2l8Ubw9-m57H_mUVOQIQwwIIYBmYnUkWi82fBvsIMI998Lyw4YPaz5diCMlqVZKacTaimCaT4E1k_vhJKyqOntdTqeNctCtylEG0c9M51-c7fja7zihmFGGs8G7ySD4X6OO6R8jT9Ra5KmsMz6bqcFGxa8IqBFqaN1kavkXKj-tzv8yd8XYvD8TfJgJMpP077QWY4x89e3r_7N3P-fs-xO206JPXfT9mKx3cQ5WRzA3LcagzWNyEPB91R_S4Puq86nqWfbmNPVH0UO38R81Efrx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313066608</pqid></control><display><type>article</type><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A</creator><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A ; Mishra, Yogendra Kumar</creatorcontrib><description>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: &lt;0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0224904</identifier><identifier>PMID: 31703098</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amides ; Analysis ; Anti-Bacterial Agents - administration &amp; dosage ; Anti-Bacterial Agents - pharmacology ; Anti-Infective Agents - pharmacology ; Antibacterial agents ; Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Bacteria ; Bacterial diseases ; Bacterial infections ; Beta lactam antibiotics ; Beta lactamases ; Biology and Life Sciences ; Cell Membrane - drug effects ; Cell Membrane - ultrastructure ; Cell Membrane Permeability ; Cell membranes ; Chemical interactions ; Chloramphenicol ; Chloromycetin ; Combinatorial analysis ; Drug resistance ; Drug Resistance, Microbial ; Drug therapy ; Flow cytometry ; Gram-negative bacteria ; Gram-positive bacteria ; Health aspects ; Infection ; Infection control ; Infections ; Kanamycin ; Laboratories ; Lactams ; Medicine and Health Sciences ; Membrane permeability ; Membrane potential ; Membrane Potentials - drug effects ; Metabolism ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Methods ; Microbial drug resistance ; Microbial Sensitivity Tests ; Microorganisms ; Multidrug resistance ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Organic chemistry ; Oxacillin ; Permeability ; Physical Sciences ; Povidone ; Public health ; Research and Analysis Methods ; Silver ; Silver - chemistry ; Staphylococcus infections ; β-Lactam antibiotics</subject><ispartof>PloS one, 2019-11, Vol.14 (11), p.e0224904</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Vazquez-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Vazquez-Muñoz et al 2019 Vazquez-Muñoz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</citedby><cites>FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</cites><orcidid>0000-0002-0156-6773 ; 0000-0002-3847-1305 ; 0000-0002-6171-8601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31703098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Vazquez-Muñoz, R</creatorcontrib><creatorcontrib>Meza-Villezcas, A</creatorcontrib><creatorcontrib>Fournier, P G J</creatorcontrib><creatorcontrib>Soria-Castro, E</creatorcontrib><creatorcontrib>Juarez-Moreno, K</creatorcontrib><creatorcontrib>Gallego-Hernández, A L</creatorcontrib><creatorcontrib>Bogdanchikova, N</creatorcontrib><creatorcontrib>Vazquez-Duhalt, R</creatorcontrib><creatorcontrib>Huerta-Saquero, A</creatorcontrib><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: &lt;0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</description><subject>Amides</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - administration &amp; dosage</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antibacterial agents</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Beta lactam antibiotics</subject><subject>Beta lactamases</subject><subject>Biology and Life Sciences</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell Membrane Permeability</subject><subject>Cell membranes</subject><subject>Chemical interactions</subject><subject>Chloramphenicol</subject><subject>Chloromycetin</subject><subject>Combinatorial analysis</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial</subject><subject>Drug therapy</subject><subject>Flow cytometry</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Health aspects</subject><subject>Infection</subject><subject>Infection control</subject><subject>Infections</subject><subject>Kanamycin</subject><subject>Laboratories</subject><subject>Lactams</subject><subject>Medicine and Health Sciences</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membrane Potentials - drug effects</subject><subject>Metabolism</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Methods</subject><subject>Microbial drug resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Microorganisms</subject><subject>Multidrug resistance</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Oxacillin</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Povidone</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Staphylococcus infections</subject><subject>β-Lactam antibiotics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlo0-RmYVlWHVhY8Os2JGkyzdAmY5IO7r83M9NdpqAgvWhIn3Py5vQUxWsIlhA38OPGj8GJfrn1Ti8BQhUD1ZPiHDKMFgQB_PRkfVa8iHEDQI0pIc-LMwwbgAGj58Vw4zrhlB60S6U3pXDJSuuTVfGwHqwKXlrRl0Ilu7PpvmxHXSZfpk6X0fY7HUonnN-KkEW9jqUdtpktvTsgSvd9OehBBuH0y-KZEX3Ur6b3RfHj08336y-L27vPq-ur24VqKpwWlBKhlAGAsLo1tEE1gZgYxVCNCZQtVhK3TAPTwoZlRCojCTSKItpKU2l8Ubw9-m57H_mUVOQIQwwIIYBmYnUkWi82fBvsIMI998Lyw4YPaz5diCMlqVZKacTaimCaT4E1k_vhJKyqOntdTqeNctCtylEG0c9M51-c7fja7zihmFGGs8G7ySD4X6OO6R8jT9Ra5KmsMz6bqcFGxa8IqBFqaN1kavkXKj-tzv8yd8XYvD8TfJgJMpP077QWY4x89e3r_7N3P-fs-xO206JPXfT9mKx3cQ5WRzA3LcagzWNyEPB91R_S4Puq86nqWfbmNPVH0UO38R81Efrx</recordid><startdate>20191108</startdate><enddate>20191108</enddate><creator>Vazquez-Muñoz, R</creator><creator>Meza-Villezcas, A</creator><creator>Fournier, P G J</creator><creator>Soria-Castro, E</creator><creator>Juarez-Moreno, K</creator><creator>Gallego-Hernández, A L</creator><creator>Bogdanchikova, N</creator><creator>Vazquez-Duhalt, R</creator><creator>Huerta-Saquero, A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0156-6773</orcidid><orcidid>https://orcid.org/0000-0002-3847-1305</orcidid><orcidid>https://orcid.org/0000-0002-6171-8601</orcidid></search><sort><creationdate>20191108</creationdate><title>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</title><author>Vazquez-Muñoz, R ; Meza-Villezcas, A ; Fournier, P G J ; Soria-Castro, E ; Juarez-Moreno, K ; Gallego-Hernández, A L ; Bogdanchikova, N ; Vazquez-Duhalt, R ; Huerta-Saquero, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-886accf00695df87256136fc925361bd3cb3d9e0fd17995dbcfb61fc828dbf4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amides</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - administration &amp; dosage</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antibacterial agents</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Beta lactam antibiotics</topic><topic>Beta lactamases</topic><topic>Biology and Life Sciences</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell Membrane Permeability</topic><topic>Cell membranes</topic><topic>Chemical interactions</topic><topic>Chloramphenicol</topic><topic>Chloromycetin</topic><topic>Combinatorial analysis</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial</topic><topic>Drug therapy</topic><topic>Flow cytometry</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Health aspects</topic><topic>Infection</topic><topic>Infection control</topic><topic>Infections</topic><topic>Kanamycin</topic><topic>Laboratories</topic><topic>Lactams</topic><topic>Medicine and Health Sciences</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membrane Potentials - drug effects</topic><topic>Metabolism</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Methods</topic><topic>Microbial drug resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Microorganisms</topic><topic>Multidrug resistance</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Oxacillin</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Povidone</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Staphylococcus infections</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazquez-Muñoz, R</creatorcontrib><creatorcontrib>Meza-Villezcas, A</creatorcontrib><creatorcontrib>Fournier, P G J</creatorcontrib><creatorcontrib>Soria-Castro, E</creatorcontrib><creatorcontrib>Juarez-Moreno, K</creatorcontrib><creatorcontrib>Gallego-Hernández, A L</creatorcontrib><creatorcontrib>Bogdanchikova, N</creatorcontrib><creatorcontrib>Vazquez-Duhalt, R</creatorcontrib><creatorcontrib>Huerta-Saquero, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazquez-Muñoz, R</au><au>Meza-Villezcas, A</au><au>Fournier, P G J</au><au>Soria-Castro, E</au><au>Juarez-Moreno, K</au><au>Gallego-Hernández, A L</au><au>Bogdanchikova, N</au><au>Vazquez-Duhalt, R</au><au>Huerta-Saquero, A</au><au>Mishra, Yogendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-11-08</date><risdate>2019</risdate><volume>14</volume><issue>11</issue><spage>e0224904</spage><pages>e0224904-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: &lt;0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31703098</pmid><doi>10.1371/journal.pone.0224904</doi><tpages>e0224904</tpages><orcidid>https://orcid.org/0000-0002-0156-6773</orcidid><orcidid>https://orcid.org/0000-0002-3847-1305</orcidid><orcidid>https://orcid.org/0000-0002-6171-8601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-11, Vol.14 (11), p.e0224904
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2313066608
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amides
Analysis
Anti-Bacterial Agents - administration & dosage
Anti-Bacterial Agents - pharmacology
Anti-Infective Agents - pharmacology
Antibacterial agents
Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
Bacteria
Bacterial diseases
Bacterial infections
Beta lactam antibiotics
Beta lactamases
Biology and Life Sciences
Cell Membrane - drug effects
Cell Membrane - ultrastructure
Cell Membrane Permeability
Cell membranes
Chemical interactions
Chloramphenicol
Chloromycetin
Combinatorial analysis
Drug resistance
Drug Resistance, Microbial
Drug therapy
Flow cytometry
Gram-negative bacteria
Gram-positive bacteria
Health aspects
Infection
Infection control
Infections
Kanamycin
Laboratories
Lactams
Medicine and Health Sciences
Membrane permeability
Membrane potential
Membrane Potentials - drug effects
Metabolism
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Methods
Microbial drug resistance
Microbial Sensitivity Tests
Microorganisms
Multidrug resistance
Nanomaterials
Nanoparticles
Nanotechnology
Organic chemistry
Oxacillin
Permeability
Physical Sciences
Povidone
Public health
Research and Analysis Methods
Silver
Silver - chemistry
Staphylococcus infections
β-Lactam antibiotics
title Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20antibiotics%20antimicrobial%20activity%20due%20to%20the%20silver%20nanoparticles%20impact%20on%20the%20cell%20membrane&rft.jtitle=PloS%20one&rft.au=Vazquez-Mu%C3%B1oz,%20R&rft.date=2019-11-08&rft.volume=14&rft.issue=11&rft.spage=e0224904&rft.pages=e0224904-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0224904&rft_dat=%3Cgale_plos_%3EA605227857%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313066608&rft_id=info:pmid/31703098&rft_galeid=A605227857&rft_doaj_id=oai_doaj_org_article_2cb8eccce29d4638828159b0695b1445&rfr_iscdi=true