The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion
The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory orga...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2019-09, Vol.15 (9), p.e1008049-e1008049 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008049 |
---|---|
container_issue | 9 |
container_start_page | e1008049 |
container_title | PLoS pathogens |
container_volume | 15 |
creator | Sherling, Emma S Perrin, Abigail J Knuepfer, Ellen Russell, Matthew R G Collinson, Lucy M Miller, Louis H Blackman, Michael J |
description | The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite. |
doi_str_mv | 10.1371/journal.ppat.1008049 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2306314950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601480617</galeid><doaj_id>oai_doaj_org_article_2489d6a65cf34f7da3cb255cdebd8f41</doaj_id><sourcerecordid>A601480617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-3a2028216c6ea945f14d21cd5fbfb9f4bafeda13ef2d2afb85904f58124abdb63</originalsourceid><addsrcrecordid>eNqVk8tu1DAUhiMEolB4AwSW2MBiBt-TbJBGFZdK5aJS1taJLzMuThzspKKvwFPjodOqg7pBXsSyv_8_Ob98quoZwUvCavLmPM5pgLAcR5iWBOMG8_Ze9YgIwRY1q_n9W_uD6nHO5xhzwoh8WB0wwluCmXxU_T7bWPQ1QO6j8XOPHATtR0hlmzZxnNIl6ubQoTHFyfoBna4-rdAY4DIjGJDN2Q6Th4BSDBaV-2vRYPUP1Mc0buLaDjb7LW_QJuYJJWtQF2I0SNsQiuoCso_Dk-pBqZ7t0933sPr-_t3Z0cfFyZcPx0erk4WuaT0tGFBMG0qklhZaLhzhhhJthOtc1zregbMGCLOOGgqua0SLuRMNoRw600l2WL248h1DzGoXY1aUYbnNReBCHF8RJsK5GpPvIV2qCF79PYhprSBNXgerKG9aI0EK7Rh3tQGmOyqENrYzjSt5H1Zvd9XmrrdGl7wShD3T_ZvBb9Q6XihZCywJLQavdgYp_pxtnlTv8zY4GGycy3_TRrZciloU9OU_6N3d7ag1lAb84GKpq7emaiUx4U0pWxdqeQdVlrG913GwzpfzPcHrPUFhJvtrWsOcszr-dvof7Od9ll-xOsWck3U32RGstpNw3aTaToLaTUKRPb-d-43o-umzPwPSB2M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306314950</pqid></control><display><type>article</type><title>The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS) Journals Open Acc</source><source>PubMed Central Open Access</source><creator>Sherling, Emma S ; Perrin, Abigail J ; Knuepfer, Ellen ; Russell, Matthew R G ; Collinson, Lucy M ; Miller, Louis H ; Blackman, Michael J</creator><creatorcontrib>Sherling, Emma S ; Perrin, Abigail J ; Knuepfer, Ellen ; Russell, Matthew R G ; Collinson, Lucy M ; Miller, Louis H ; Blackman, Michael J</creatorcontrib><description>The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1008049</identifier><identifier>PMID: 31491036</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigens ; Antigens, Protozoan - immunology ; Behavior ; Biochemistry ; Biology and Life Sciences ; Biosynthesis ; Blood ; Blood cells ; Crick, Francis ; Development and progression ; Disease ; Disruption ; Egress ; Erythrocytes ; Erythrocytes - parasitology ; Funding ; Health aspects ; Host-Parasite Interactions - physiology ; Host-parasite relationships ; Humans ; Kinases ; Laboratories ; Life cycles ; Lipids ; Malaria ; Malaria - metabolism ; Malaria, Falciparum - metabolism ; Membrane proteins ; Membrane Proteins - metabolism ; Merozoites ; Merozoites - metabolism ; Microscopy ; Molecular weight ; Morphogenesis ; Neck ; Organelles ; Organelles - metabolism ; Parasites ; Parasitology ; Plasmodium falciparum ; Plasmodium falciparum - metabolism ; Protein Transport - physiology ; Proteins ; Protozoan Proteins - metabolism ; Red blood cells ; Research and Analysis Methods ; Supervision ; Tropical diseases ; Vector-borne diseases</subject><ispartof>PLoS pathogens, 2019-09, Vol.15 (9), p.e1008049-e1008049</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-3a2028216c6ea945f14d21cd5fbfb9f4bafeda13ef2d2afb85904f58124abdb63</citedby><cites>FETCH-LOGICAL-c727t-3a2028216c6ea945f14d21cd5fbfb9f4bafeda13ef2d2afb85904f58124abdb63</cites><orcidid>0000-0003-4608-7669 ; 0000-0002-7442-3810 ; 0000-0002-8339-7060 ; 0000-0001-6682-4297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherling, Emma S</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Russell, Matthew R G</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Miller, Louis H</creatorcontrib><creatorcontrib>Blackman, Michael J</creatorcontrib><title>The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.</description><subject>Antigens</subject><subject>Antigens, Protozoan - immunology</subject><subject>Behavior</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Crick, Francis</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Disruption</subject><subject>Egress</subject><subject>Erythrocytes</subject><subject>Erythrocytes - parasitology</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Host-parasite relationships</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Life cycles</subject><subject>Lipids</subject><subject>Malaria</subject><subject>Malaria - metabolism</subject><subject>Malaria, Falciparum - metabolism</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Merozoites</subject><subject>Merozoites - metabolism</subject><subject>Microscopy</subject><subject>Molecular weight</subject><subject>Morphogenesis</subject><subject>Neck</subject><subject>Organelles</subject><subject>Organelles - metabolism</subject><subject>Parasites</subject><subject>Parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Protozoan Proteins - metabolism</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Supervision</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8tu1DAUhiMEolB4AwSW2MBiBt-TbJBGFZdK5aJS1taJLzMuThzspKKvwFPjodOqg7pBXsSyv_8_Ob98quoZwUvCavLmPM5pgLAcR5iWBOMG8_Ze9YgIwRY1q_n9W_uD6nHO5xhzwoh8WB0wwluCmXxU_T7bWPQ1QO6j8XOPHATtR0hlmzZxnNIl6ubQoTHFyfoBna4-rdAY4DIjGJDN2Q6Th4BSDBaV-2vRYPUP1Mc0buLaDjb7LW_QJuYJJWtQF2I0SNsQiuoCso_Dk-pBqZ7t0933sPr-_t3Z0cfFyZcPx0erk4WuaT0tGFBMG0qklhZaLhzhhhJthOtc1zregbMGCLOOGgqua0SLuRMNoRw600l2WL248h1DzGoXY1aUYbnNReBCHF8RJsK5GpPvIV2qCF79PYhprSBNXgerKG9aI0EK7Rh3tQGmOyqENrYzjSt5H1Zvd9XmrrdGl7wShD3T_ZvBb9Q6XihZCywJLQavdgYp_pxtnlTv8zY4GGycy3_TRrZciloU9OU_6N3d7ag1lAb84GKpq7emaiUx4U0pWxdqeQdVlrG913GwzpfzPcHrPUFhJvtrWsOcszr-dvof7Od9ll-xOsWck3U32RGstpNw3aTaToLaTUKRPb-d-43o-umzPwPSB2M</recordid><startdate>20190906</startdate><enddate>20190906</enddate><creator>Sherling, Emma S</creator><creator>Perrin, Abigail J</creator><creator>Knuepfer, Ellen</creator><creator>Russell, Matthew R G</creator><creator>Collinson, Lucy M</creator><creator>Miller, Louis H</creator><creator>Blackman, Michael J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4608-7669</orcidid><orcidid>https://orcid.org/0000-0002-7442-3810</orcidid><orcidid>https://orcid.org/0000-0002-8339-7060</orcidid><orcidid>https://orcid.org/0000-0001-6682-4297</orcidid></search><sort><creationdate>20190906</creationdate><title>The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion</title><author>Sherling, Emma S ; Perrin, Abigail J ; Knuepfer, Ellen ; Russell, Matthew R G ; Collinson, Lucy M ; Miller, Louis H ; Blackman, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-3a2028216c6ea945f14d21cd5fbfb9f4bafeda13ef2d2afb85904f58124abdb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antigens</topic><topic>Antigens, Protozoan - immunology</topic><topic>Behavior</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Crick, Francis</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Disruption</topic><topic>Egress</topic><topic>Erythrocytes</topic><topic>Erythrocytes - parasitology</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Host-parasite relationships</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Life cycles</topic><topic>Lipids</topic><topic>Malaria</topic><topic>Malaria - metabolism</topic><topic>Malaria, Falciparum - metabolism</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Merozoites</topic><topic>Merozoites - metabolism</topic><topic>Microscopy</topic><topic>Molecular weight</topic><topic>Morphogenesis</topic><topic>Neck</topic><topic>Organelles</topic><topic>Organelles - metabolism</topic><topic>Parasites</topic><topic>Parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Protozoan Proteins - metabolism</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Supervision</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherling, Emma S</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Russell, Matthew R G</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Miller, Louis H</creatorcontrib><creatorcontrib>Blackman, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherling, Emma S</au><au>Perrin, Abigail J</au><au>Knuepfer, Ellen</au><au>Russell, Matthew R G</au><au>Collinson, Lucy M</au><au>Miller, Louis H</au><au>Blackman, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2019-09-06</date><risdate>2019</risdate><volume>15</volume><issue>9</issue><spage>e1008049</spage><epage>e1008049</epage><pages>e1008049-e1008049</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31491036</pmid><doi>10.1371/journal.ppat.1008049</doi><orcidid>https://orcid.org/0000-0003-4608-7669</orcidid><orcidid>https://orcid.org/0000-0002-7442-3810</orcidid><orcidid>https://orcid.org/0000-0002-8339-7060</orcidid><orcidid>https://orcid.org/0000-0001-6682-4297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2019-09, Vol.15 (9), p.e1008049-e1008049 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2306314950 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) Journals Open Acc; PubMed Central Open Access |
subjects | Antigens Antigens, Protozoan - immunology Behavior Biochemistry Biology and Life Sciences Biosynthesis Blood Blood cells Crick, Francis Development and progression Disease Disruption Egress Erythrocytes Erythrocytes - parasitology Funding Health aspects Host-Parasite Interactions - physiology Host-parasite relationships Humans Kinases Laboratories Life cycles Lipids Malaria Malaria - metabolism Malaria, Falciparum - metabolism Membrane proteins Membrane Proteins - metabolism Merozoites Merozoites - metabolism Microscopy Molecular weight Morphogenesis Neck Organelles Organelles - metabolism Parasites Parasitology Plasmodium falciparum Plasmodium falciparum - metabolism Protein Transport - physiology Proteins Protozoan Proteins - metabolism Red blood cells Research and Analysis Methods Supervision Tropical diseases Vector-borne diseases |
title | The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Plasmodium%20falciparum%20rhoptry%20bulb%20protein%20RAMA%20plays%20an%20essential%20role%20in%20rhoptry%20neck%20morphogenesis%20and%20host%20red%20blood%20cell%20invasion&rft.jtitle=PLoS%20pathogens&rft.au=Sherling,%20Emma%20S&rft.date=2019-09-06&rft.volume=15&rft.issue=9&rft.spage=e1008049&rft.epage=e1008049&rft.pages=e1008049-e1008049&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1008049&rft_dat=%3Cgale_plos_%3EA601480617%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306314950&rft_id=info:pmid/31491036&rft_galeid=A601480617&rft_doaj_id=oai_doaj_org_article_2489d6a65cf34f7da3cb255cdebd8f41&rfr_iscdi=true |