Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop
The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-10, Vol.14 (10), p.e0222932-e0222932 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0222932 |
---|---|
container_issue | 10 |
container_start_page | e0222932 |
container_title | PloS one |
container_volume | 14 |
creator | Champeil, Philippe de Foresta, Béatrice Picard, Martin Gauron, Carole Georgin, Dominique le Maire, Marc Møller, Jesper V Lenoir, Guillaume Montigny, Cédric |
description | The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought. We also exemplify the case of brominated dodecyl-maltoside, whose kinetics for overall binding to and dissociation from membranes comprise both a rapid and a sower phase, the latter being presumably due to flip-flop between the two leaflets of the membrane. Consequently, equilibrium is reached only after a few seconds for DDM. This work thereby emphasizes the interest of using the fluorescence quenching associated with brominated detergents for studying the kinetics of detergent/membrane interactions, namely association, dissociation and flip-flop rates. |
doi_str_mv | 10.1371/journal.pone.0222932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2306203189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4aa83949c10942028c6720c14d91f2f1</doaj_id><sourcerecordid>2306203189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-e83f9bd97e98d327e7e497bcbad6e657e87087849e8e614ba0638efd212100683</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJC0js4o_EsXtAqlZAV1qJC5wtxxnveuXEwc4W9f_xw0g2aelWnGyP33sz82ay7DXBS8JK8mkfDrHVftmFFpaYUioZfZKdk-FYcIrZ0wf3s-xFSnuMCyY4f56dMcKJoBifZ3_WbQ9Rm96FFgWLahieW2j7hH67focqF3zYOqM9aqCpom4hXaJVaDodXZo41h9ChGSgNYB0Svp2Jlvn-6iP0l0MfTDBJ6TbGrmm84Pm-JOQDRH1O0ADEtJJDaNYMO6I-4hq9-91VLHedQvrQ_cye2a1T_BqPi-yn1-__FhdLzbfv61XV5uFKTjuFyCYlVUtS5CiZrSEEnJZVqbSNQdelCBKLEqRSxDASV5pzJkAW1NCCcZcsIvs7aTb-ZDUPICkKMOjyUTIAbGeEHXQe9VF1-h4q4J26hgIcat07J3xoHKtBZO5NATLnGIqDC8pNiSvJbHUkkHr85ztUDVQD_YOZvoT0dOf1u3UNtwoXsoip_kg8GES2D2iXV9t1BjDlFFSYH4zJns_J4vh1wFSrxo3TNT7YeDhMPWYS17I0YV3j6D_dyKfUCaGlCLY-woIVuMC37HUuMBqXuCB9uZh0_eku41lfwGV2fLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306203189</pqid></control><display><type>article</type><title>Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Champeil, Philippe ; de Foresta, Béatrice ; Picard, Martin ; Gauron, Carole ; Georgin, Dominique ; le Maire, Marc ; Møller, Jesper V ; Lenoir, Guillaume ; Montigny, Cédric</creator><contributor>Espinoza-Fonseca, L. Michel</contributor><creatorcontrib>Champeil, Philippe ; de Foresta, Béatrice ; Picard, Martin ; Gauron, Carole ; Georgin, Dominique ; le Maire, Marc ; Møller, Jesper V ; Lenoir, Guillaume ; Montigny, Cédric ; Espinoza-Fonseca, L. Michel</creatorcontrib><description>The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought. We also exemplify the case of brominated dodecyl-maltoside, whose kinetics for overall binding to and dissociation from membranes comprise both a rapid and a sower phase, the latter being presumably due to flip-flop between the two leaflets of the membrane. Consequently, equilibrium is reached only after a few seconds for DDM. This work thereby emphasizes the interest of using the fluorescence quenching associated with brominated detergents for studying the kinetics of detergent/membrane interactions, namely association, dissociation and flip-flop rates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0222932</identifier><identifier>PMID: 31618200</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding ; Biochemistry ; Biological membranes ; Biology ; Biology and Life Sciences ; Bromination ; Detergents ; Detergents - chemistry ; Detergents - pharmacology ; Dissociation ; Endoplasmic reticulum ; Engineering and Technology ; Experiments ; Filtration ; Filtration - methods ; Fluorescence ; Glass fibers ; Intracellular Membranes - metabolism ; Kinetics ; Life Sciences ; Lipids ; Membrane vesicles ; Membranes ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Proteins ; Reaction kinetics ; Research and Analysis Methods ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - metabolism ; Spectrometry, Fluorescence ; Transport Vesicles - metabolism</subject><ispartof>PloS one, 2019-10, Vol.14 (10), p.e0222932-e0222932</ispartof><rights>2019 Champeil et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Champeil et al 2019 Champeil et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-e83f9bd97e98d327e7e497bcbad6e657e87087849e8e614ba0638efd212100683</citedby><cites>FETCH-LOGICAL-c560t-e83f9bd97e98d327e7e497bcbad6e657e87087849e8e614ba0638efd212100683</cites><orcidid>0000-0003-0905-9861 ; 0000-0002-6518-8900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795424/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795424/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31618200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02321506$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Espinoza-Fonseca, L. Michel</contributor><creatorcontrib>Champeil, Philippe</creatorcontrib><creatorcontrib>de Foresta, Béatrice</creatorcontrib><creatorcontrib>Picard, Martin</creatorcontrib><creatorcontrib>Gauron, Carole</creatorcontrib><creatorcontrib>Georgin, Dominique</creatorcontrib><creatorcontrib>le Maire, Marc</creatorcontrib><creatorcontrib>Møller, Jesper V</creatorcontrib><creatorcontrib>Lenoir, Guillaume</creatorcontrib><creatorcontrib>Montigny, Cédric</creatorcontrib><title>Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought. We also exemplify the case of brominated dodecyl-maltoside, whose kinetics for overall binding to and dissociation from membranes comprise both a rapid and a sower phase, the latter being presumably due to flip-flop between the two leaflets of the membrane. Consequently, equilibrium is reached only after a few seconds for DDM. This work thereby emphasizes the interest of using the fluorescence quenching associated with brominated detergents for studying the kinetics of detergent/membrane interactions, namely association, dissociation and flip-flop rates.</description><subject>Binding</subject><subject>Biochemistry</subject><subject>Biological membranes</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Bromination</subject><subject>Detergents</subject><subject>Detergents - chemistry</subject><subject>Detergents - pharmacology</subject><subject>Dissociation</subject><subject>Endoplasmic reticulum</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>Fluorescence</subject><subject>Glass fibers</subject><subject>Intracellular Membranes - metabolism</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membrane vesicles</subject><subject>Membranes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Research and Analysis Methods</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Spectrometry, Fluorescence</subject><subject>Transport Vesicles - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJC0js4o_EsXtAqlZAV1qJC5wtxxnveuXEwc4W9f_xw0g2aelWnGyP33sz82ay7DXBS8JK8mkfDrHVftmFFpaYUioZfZKdk-FYcIrZ0wf3s-xFSnuMCyY4f56dMcKJoBifZ3_WbQ9Rm96FFgWLahieW2j7hH67focqF3zYOqM9aqCpom4hXaJVaDodXZo41h9ChGSgNYB0Svp2Jlvn-6iP0l0MfTDBJ6TbGrmm84Pm-JOQDRH1O0ADEtJJDaNYMO6I-4hq9-91VLHedQvrQ_cye2a1T_BqPi-yn1-__FhdLzbfv61XV5uFKTjuFyCYlVUtS5CiZrSEEnJZVqbSNQdelCBKLEqRSxDASV5pzJkAW1NCCcZcsIvs7aTb-ZDUPICkKMOjyUTIAbGeEHXQe9VF1-h4q4J26hgIcat07J3xoHKtBZO5NATLnGIqDC8pNiSvJbHUkkHr85ztUDVQD_YOZvoT0dOf1u3UNtwoXsoip_kg8GES2D2iXV9t1BjDlFFSYH4zJns_J4vh1wFSrxo3TNT7YeDhMPWYS17I0YV3j6D_dyKfUCaGlCLY-woIVuMC37HUuMBqXuCB9uZh0_eku41lfwGV2fLw</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Champeil, Philippe</creator><creator>de Foresta, Béatrice</creator><creator>Picard, Martin</creator><creator>Gauron, Carole</creator><creator>Georgin, Dominique</creator><creator>le Maire, Marc</creator><creator>Møller, Jesper V</creator><creator>Lenoir, Guillaume</creator><creator>Montigny, Cédric</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0905-9861</orcidid><orcidid>https://orcid.org/0000-0002-6518-8900</orcidid></search><sort><creationdate>20191016</creationdate><title>Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop</title><author>Champeil, Philippe ; de Foresta, Béatrice ; Picard, Martin ; Gauron, Carole ; Georgin, Dominique ; le Maire, Marc ; Møller, Jesper V ; Lenoir, Guillaume ; Montigny, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-e83f9bd97e98d327e7e497bcbad6e657e87087849e8e614ba0638efd212100683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binding</topic><topic>Biochemistry</topic><topic>Biological membranes</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Bromination</topic><topic>Detergents</topic><topic>Detergents - chemistry</topic><topic>Detergents - pharmacology</topic><topic>Dissociation</topic><topic>Endoplasmic reticulum</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>Fluorescence</topic><topic>Glass fibers</topic><topic>Intracellular Membranes - metabolism</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membrane vesicles</topic><topic>Membranes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Research and Analysis Methods</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Spectrometry, Fluorescence</topic><topic>Transport Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Champeil, Philippe</creatorcontrib><creatorcontrib>de Foresta, Béatrice</creatorcontrib><creatorcontrib>Picard, Martin</creatorcontrib><creatorcontrib>Gauron, Carole</creatorcontrib><creatorcontrib>Georgin, Dominique</creatorcontrib><creatorcontrib>le Maire, Marc</creatorcontrib><creatorcontrib>Møller, Jesper V</creatorcontrib><creatorcontrib>Lenoir, Guillaume</creatorcontrib><creatorcontrib>Montigny, Cédric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Champeil, Philippe</au><au>de Foresta, Béatrice</au><au>Picard, Martin</au><au>Gauron, Carole</au><au>Georgin, Dominique</au><au>le Maire, Marc</au><au>Møller, Jesper V</au><au>Lenoir, Guillaume</au><au>Montigny, Cédric</au><au>Espinoza-Fonseca, L. Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-10-16</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>e0222932</spage><epage>e0222932</epage><pages>e0222932-e0222932</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought. We also exemplify the case of brominated dodecyl-maltoside, whose kinetics for overall binding to and dissociation from membranes comprise both a rapid and a sower phase, the latter being presumably due to flip-flop between the two leaflets of the membrane. Consequently, equilibrium is reached only after a few seconds for DDM. This work thereby emphasizes the interest of using the fluorescence quenching associated with brominated detergents for studying the kinetics of detergent/membrane interactions, namely association, dissociation and flip-flop rates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31618200</pmid><doi>10.1371/journal.pone.0222932</doi><orcidid>https://orcid.org/0000-0003-0905-9861</orcidid><orcidid>https://orcid.org/0000-0002-6518-8900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-10, Vol.14 (10), p.e0222932-e0222932 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2306203189 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding Biochemistry Biological membranes Biology Biology and Life Sciences Bromination Detergents Detergents - chemistry Detergents - pharmacology Dissociation Endoplasmic reticulum Engineering and Technology Experiments Filtration Filtration - methods Fluorescence Glass fibers Intracellular Membranes - metabolism Kinetics Life Sciences Lipids Membrane vesicles Membranes NMR Nuclear magnetic resonance Physical Sciences Proteins Reaction kinetics Research and Analysis Methods Sarcoplasmic reticulum Sarcoplasmic Reticulum - metabolism Spectrometry, Fluorescence Transport Vesicles - metabolism |
title | Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20detergents%20with%20biological%20membranes:%20Comparison%20of%20fluorescence%20assays%20with%20filtration%20protocols%20and%20implications%20for%20the%20rates%20of%20detergent%20association,%20dissociation%20and%20flip-flop&rft.jtitle=PloS%20one&rft.au=Champeil,%20Philippe&rft.date=2019-10-16&rft.volume=14&rft.issue=10&rft.spage=e0222932&rft.epage=e0222932&rft.pages=e0222932-e0222932&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0222932&rft_dat=%3Cproquest_plos_%3E2306203189%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306203189&rft_id=info:pmid/31618200&rft_doaj_id=oai_doaj_org_article_4aa83949c10942028c6720c14d91f2f1&rfr_iscdi=true |