Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)
To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-10, Vol.14 (10), p.e0223476-e0223476 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0223476 |
---|---|
container_issue | 10 |
container_start_page | e0223476 |
container_title | PloS one |
container_volume | 14 |
creator | Shaikh, Amber Jamal, M Asif Hanif, Fozia Khan, M Sadiq Ali Inayatullah, Syed |
description | To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods. |
doi_str_mv | 10.1371/journal.pone.0223476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2303979802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_833ac375c787436ca1438b8f8453e2e3</doaj_id><sourcerecordid>2303979802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-d8cf539633d07845b1b6632d16549fe7184adf339f852df3af6a0e3ac19ba87d3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqXwDxBY4rJ72MX2JLZzqVT1Ayq15QCcLSe2d71y4tZOFpWfwK_G-9GqRZw8Gr_v45nxFMV7gucEOPm8CmPslZ_fht7MMaVQcvaiOCQ10BmjGF4-iQ-KNymtMK5AMPa6OADCMKYcDos_N2aMyqPO9a5zv9XgQo86MyyDTmhyc309RTZElIJfu36B1io61XiDQtQmIhtVu3FkgDZe3SPtrDXR9IPLKXM3bnkZdHF2dp6m6Jcblii5bvRqMBqpvjfKb7iT7yfTt8Urq3wy7_bnUfHz4vzH6dfZ1bcvl6cnV7O2omyYadHaCmoGoDEXZdWQhjGgmrCqrK3hRJRKW4DaiormQFmmsAHVkrpRgms4Kj7uuLc-JLkfY5IUMNS8FphmxeVOoYNaydvoOhXvZVBObhMhLqSKg2u9kQIyGXjVcsFLYK0iJYhG2FwYGGogs473r41NZ3SbZ5Pn_Qz6_KZ3S7kIa8l4_qsKZ8BkD4jhbjRpkJ1LrfFe9SaM27qzilWEZOmnf6T_767cqdoYUorGPhZDsNys1oNLblZL7lcr2z48beTR9LBL8Be71c1T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303979802</pqid></control><display><type>article</type><title>Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shaikh, Amber ; Jamal, M Asif ; Hanif, Fozia ; Khan, M Sadiq Ali ; Inayatullah, Syed</creator><contributor>Ainseba, Bedreddine</contributor><creatorcontrib>Shaikh, Amber ; Jamal, M Asif ; Hanif, Fozia ; Khan, M Sadiq Ali ; Inayatullah, Syed ; Ainseba, Bedreddine</creatorcontrib><description>To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0223476</identifier><identifier>PMID: 31600273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Applied mathematics ; Biology and Life Sciences ; Chebyshev approximation ; Computer and Information Sciences ; Computer applications ; Computer Simulation ; Control theory ; Delay ; Derivatives ; Differential equations ; Engineering and Technology ; Error analysis ; Fluid mechanics ; Genetic algorithms ; Kalman filters ; Literature reviews ; Mathematical models ; Mathematicians ; Methods ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Numerical experiments ; Optimization ; Partial differential equations ; Physical Sciences ; Physics ; Polynomials ; Research and Analysis Methods ; Researchers ; Simulated annealing ; Simulation</subject><ispartof>PloS one, 2019-10, Vol.14 (10), p.e0223476-e0223476</ispartof><rights>2019 Shaikh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Shaikh et al 2019 Shaikh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-d8cf539633d07845b1b6632d16549fe7184adf339f852df3af6a0e3ac19ba87d3</citedby><cites>FETCH-LOGICAL-c526t-d8cf539633d07845b1b6632d16549fe7184adf339f852df3af6a0e3ac19ba87d3</cites><orcidid>0000-0003-3289-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31600273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ainseba, Bedreddine</contributor><creatorcontrib>Shaikh, Amber</creatorcontrib><creatorcontrib>Jamal, M Asif</creatorcontrib><creatorcontrib>Hanif, Fozia</creatorcontrib><creatorcontrib>Khan, M Sadiq Ali</creatorcontrib><creatorcontrib>Inayatullah, Syed</creatorcontrib><title>Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Biology and Life Sciences</subject><subject>Chebyshev approximation</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Control theory</subject><subject>Delay</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Engineering and Technology</subject><subject>Error analysis</subject><subject>Fluid mechanics</subject><subject>Genetic algorithms</subject><subject>Kalman filters</subject><subject>Literature reviews</subject><subject>Mathematical models</subject><subject>Mathematicians</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Numerical experiments</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Simulated annealing</subject><subject>Simulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEoqXwDxBY4rJ72MX2JLZzqVT1Ayq15QCcLSe2d71y4tZOFpWfwK_G-9GqRZw8Gr_v45nxFMV7gucEOPm8CmPslZ_fht7MMaVQcvaiOCQ10BmjGF4-iQ-KNymtMK5AMPa6OADCMKYcDos_N2aMyqPO9a5zv9XgQo86MyyDTmhyc309RTZElIJfu36B1io61XiDQtQmIhtVu3FkgDZe3SPtrDXR9IPLKXM3bnkZdHF2dp6m6Jcblii5bvRqMBqpvjfKb7iT7yfTt8Urq3wy7_bnUfHz4vzH6dfZ1bcvl6cnV7O2omyYadHaCmoGoDEXZdWQhjGgmrCqrK3hRJRKW4DaiormQFmmsAHVkrpRgms4Kj7uuLc-JLkfY5IUMNS8FphmxeVOoYNaydvoOhXvZVBObhMhLqSKg2u9kQIyGXjVcsFLYK0iJYhG2FwYGGogs473r41NZ3SbZ5Pn_Qz6_KZ3S7kIa8l4_qsKZ8BkD4jhbjRpkJ1LrfFe9SaM27qzilWEZOmnf6T_767cqdoYUorGPhZDsNys1oNLblZL7lcr2z48beTR9LBL8Be71c1T</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Shaikh, Amber</creator><creator>Jamal, M Asif</creator><creator>Hanif, Fozia</creator><creator>Khan, M Sadiq Ali</creator><creator>Inayatullah, Syed</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3289-7679</orcidid></search><sort><creationdate>20191010</creationdate><title>Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)</title><author>Shaikh, Amber ; Jamal, M Asif ; Hanif, Fozia ; Khan, M Sadiq Ali ; Inayatullah, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-d8cf539633d07845b1b6632d16549fe7184adf339f852df3af6a0e3ac19ba87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Biology and Life Sciences</topic><topic>Chebyshev approximation</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Control theory</topic><topic>Delay</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Engineering and Technology</topic><topic>Error analysis</topic><topic>Fluid mechanics</topic><topic>Genetic algorithms</topic><topic>Kalman filters</topic><topic>Literature reviews</topic><topic>Mathematical models</topic><topic>Mathematicians</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Numerical experiments</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Simulated annealing</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Amber</creatorcontrib><creatorcontrib>Jamal, M Asif</creatorcontrib><creatorcontrib>Hanif, Fozia</creatorcontrib><creatorcontrib>Khan, M Sadiq Ali</creatorcontrib><creatorcontrib>Inayatullah, Syed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Amber</au><au>Jamal, M Asif</au><au>Hanif, Fozia</au><au>Khan, M Sadiq Ali</au><au>Inayatullah, Syed</au><au>Ainseba, Bedreddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-10-10</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>e0223476</spage><epage>e0223476</epage><pages>e0223476-e0223476</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31600273</pmid><doi>10.1371/journal.pone.0223476</doi><orcidid>https://orcid.org/0000-0003-3289-7679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-10, Vol.14 (10), p.e0223476-e0223476 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2303979802 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Applied mathematics Biology and Life Sciences Chebyshev approximation Computer and Information Sciences Computer applications Computer Simulation Control theory Delay Derivatives Differential equations Engineering and Technology Error analysis Fluid mechanics Genetic algorithms Kalman filters Literature reviews Mathematical models Mathematicians Methods Models, Theoretical Neural networks Neural Networks, Computer Numerical experiments Optimization Partial differential equations Physical Sciences Physics Polynomials Research and Analysis Methods Researchers Simulated annealing Simulation |
title | Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20minimization%20methods%20(NMM)%20for%20solving%20variable%20order%20fractional%20delay%20differential%20equations%20(FDDEs)%20with%20simulated%20annealing%20(SA)&rft.jtitle=PloS%20one&rft.au=Shaikh,%20Amber&rft.date=2019-10-10&rft.volume=14&rft.issue=10&rft.spage=e0223476&rft.epage=e0223476&rft.pages=e0223476-e0223476&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0223476&rft_dat=%3Cproquest_plos_%3E2303979802%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303979802&rft_id=info:pmid/31600273&rft_doaj_id=oai_doaj_org_article_833ac375c787436ca1438b8f8453e2e3&rfr_iscdi=true |