Precluding rare outcomes by predicting their absence
Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-10, Vol.14 (10), p.e0223239-e0223239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0223239 |
---|---|
container_issue | 10 |
container_start_page | e0223239 |
container_title | PloS one |
container_volume | 14 |
creator | Schoon, Eric W Melamed, David Breiger, Ronald L Yoon, Eunsung Kleps, Christopher |
description | Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We introduce a novel approach for analyzing rare event data that addresses these challenges by turning attention to the conditions under which rare outcomes do not occur. We detail how configurational methods can be used to identify conditions or sets of conditions that would preclude the occurrence of a rare outcome. Results from Monte Carlo experiments show that our approach can be used to systematically preclude up to 78.6% of observations, and application to ground-truth data coupled with a bootstrap inferential test illustrates how our approach can also yield novel substantive insights that are obscured by standard statistical analyses. |
doi_str_mv | 10.1371/journal.pone.0223239 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2303978915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602311812</galeid><doaj_id>oai_doaj_org_article_79913cf84a5b4d70ab6ab559dd7b711d</doaj_id><sourcerecordid>A602311812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5dc857427526461046b0cc0aee2026b8e712d9564b9946ac04461a705180e1583</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EFQfRi13xMksmNUIofC4WKX7chk5yZzTIzWZOM2H9vtjstO9ILyUXCOc95T07yFsVzjFaYCvxu68cw6G618wOsECGUUPmgOMWSkiUniD48Op8UT2LcIsRoxfnj4oRijhAR5LQovwQw3Wjd0C6CDrDwYzK-h7iorxe7ANaZtM-lDbiw0HWEwcDT4lGjuwjPpv2s-PHxw_eLz8vLq0_ri_PLpeGSpCWzpmKiJIIRXnKMSl4jY5AGIIjwugKBiZWMl7WUJdcGlZnSAjFcIcCsomfFy4PurvNRTQNHRSiiUlQSs0ysD4T1eqt2wfU6XCuvnboJ-NAqHZIzHSghJaamqUrN6tIKpGuua8aktaIWGNus9X7qNtY9WANDCrqbic4zg9uo1v9WXFSccZQF3kwCwf8aISbVu2ig6_QAfry5N0OUCSky-uof9P7pJqrVeQA3ND73NXtRdc4RoRhXmGRqdQ-Vl4XemeyOxuX4rODtrCAzCf6kVo8xqvW3r__PXv2cs6-P2A3oLm2i78bk_BDnYHkATfAxBmjuHhkjtTf37WuovbnVZO5c9uL4g-6Kbt1M_wLFDfD5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303978915</pqid></control><display><type>article</type><title>Precluding rare outcomes by predicting their absence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Sociological Abstracts</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Schoon, Eric W ; Melamed, David ; Breiger, Ronald L ; Yoon, Eunsung ; Kleps, Christopher</creator><contributor>Calabrese, Raffaella</contributor><creatorcontrib>Schoon, Eric W ; Melamed, David ; Breiger, Ronald L ; Yoon, Eunsung ; Kleps, Christopher ; Calabrese, Raffaella</creatorcontrib><description>Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We introduce a novel approach for analyzing rare event data that addresses these challenges by turning attention to the conditions under which rare outcomes do not occur. We detail how configurational methods can be used to identify conditions or sets of conditions that would preclude the occurrence of a rare outcome. Results from Monte Carlo experiments show that our approach can be used to systematically preclude up to 78.6% of observations, and application to ground-truth data coupled with a bootstrap inferential test illustrates how our approach can also yield novel substantive insights that are obscured by standard statistical analyses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0223239</identifier><identifier>PMID: 31600272</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Computer simulation ; Data Interpretation, Statistical ; Forecasting ; Forecasting - methods ; Fuzzy sets ; Identification methods ; Methods ; Models, Statistical ; Monte Carlo Method ; Monte Carlo methods ; People and Places ; Physical Sciences ; Research and Analysis Methods ; Research Design ; Social Sciences ; Sociology ; Statistical analysis ; Statistics (Mathematics)</subject><ispartof>PloS one, 2019-10, Vol.14 (10), p.e0223239-e0223239</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Schoon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Schoon et al 2019 Schoon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5dc857427526461046b0cc0aee2026b8e712d9564b9946ac04461a705180e1583</citedby><cites>FETCH-LOGICAL-c692t-5dc857427526461046b0cc0aee2026b8e712d9564b9946ac04461a705180e1583</cites><orcidid>0000-0002-0262-9959 ; 0000-0003-0575-9211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786560/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786560/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27344,27924,27925,33774,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31600272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Calabrese, Raffaella</contributor><creatorcontrib>Schoon, Eric W</creatorcontrib><creatorcontrib>Melamed, David</creatorcontrib><creatorcontrib>Breiger, Ronald L</creatorcontrib><creatorcontrib>Yoon, Eunsung</creatorcontrib><creatorcontrib>Kleps, Christopher</creatorcontrib><title>Precluding rare outcomes by predicting their absence</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We introduce a novel approach for analyzing rare event data that addresses these challenges by turning attention to the conditions under which rare outcomes do not occur. We detail how configurational methods can be used to identify conditions or sets of conditions that would preclude the occurrence of a rare outcome. Results from Monte Carlo experiments show that our approach can be used to systematically preclude up to 78.6% of observations, and application to ground-truth data coupled with a bootstrap inferential test illustrates how our approach can also yield novel substantive insights that are obscured by standard statistical analyses.</description><subject>Computer simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Forecasting</subject><subject>Forecasting - methods</subject><subject>Fuzzy sets</subject><subject>Identification methods</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Research Design</subject><subject>Social Sciences</subject><subject>Sociology</subject><subject>Statistical analysis</subject><subject>Statistics (Mathematics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EFQfRi13xMksmNUIofC4WKX7chk5yZzTIzWZOM2H9vtjstO9ILyUXCOc95T07yFsVzjFaYCvxu68cw6G618wOsECGUUPmgOMWSkiUniD48Op8UT2LcIsRoxfnj4oRijhAR5LQovwQw3Wjd0C6CDrDwYzK-h7iorxe7ANaZtM-lDbiw0HWEwcDT4lGjuwjPpv2s-PHxw_eLz8vLq0_ri_PLpeGSpCWzpmKiJIIRXnKMSl4jY5AGIIjwugKBiZWMl7WUJdcGlZnSAjFcIcCsomfFy4PurvNRTQNHRSiiUlQSs0ysD4T1eqt2wfU6XCuvnboJ-NAqHZIzHSghJaamqUrN6tIKpGuua8aktaIWGNus9X7qNtY9WANDCrqbic4zg9uo1v9WXFSccZQF3kwCwf8aISbVu2ig6_QAfry5N0OUCSky-uof9P7pJqrVeQA3ND73NXtRdc4RoRhXmGRqdQ-Vl4XemeyOxuX4rODtrCAzCf6kVo8xqvW3r__PXv2cs6-P2A3oLm2i78bk_BDnYHkATfAxBmjuHhkjtTf37WuovbnVZO5c9uL4g-6Kbt1M_wLFDfD5</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Schoon, Eric W</creator><creator>Melamed, David</creator><creator>Breiger, Ronald L</creator><creator>Yoon, Eunsung</creator><creator>Kleps, Christopher</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U4</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>WZK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0262-9959</orcidid><orcidid>https://orcid.org/0000-0003-0575-9211</orcidid></search><sort><creationdate>20191010</creationdate><title>Precluding rare outcomes by predicting their absence</title><author>Schoon, Eric W ; Melamed, David ; Breiger, Ronald L ; Yoon, Eunsung ; Kleps, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5dc857427526461046b0cc0aee2026b8e712d9564b9946ac04461a705180e1583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Forecasting</topic><topic>Forecasting - methods</topic><topic>Fuzzy sets</topic><topic>Identification methods</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Research Design</topic><topic>Social Sciences</topic><topic>Sociology</topic><topic>Statistical analysis</topic><topic>Statistics (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoon, Eric W</creatorcontrib><creatorcontrib>Melamed, David</creatorcontrib><creatorcontrib>Breiger, Ronald L</creatorcontrib><creatorcontrib>Yoon, Eunsung</creatorcontrib><creatorcontrib>Kleps, Christopher</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoon, Eric W</au><au>Melamed, David</au><au>Breiger, Ronald L</au><au>Yoon, Eunsung</au><au>Kleps, Christopher</au><au>Calabrese, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precluding rare outcomes by predicting their absence</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-10-10</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>e0223239</spage><epage>e0223239</epage><pages>e0223239-e0223239</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We introduce a novel approach for analyzing rare event data that addresses these challenges by turning attention to the conditions under which rare outcomes do not occur. We detail how configurational methods can be used to identify conditions or sets of conditions that would preclude the occurrence of a rare outcome. Results from Monte Carlo experiments show that our approach can be used to systematically preclude up to 78.6% of observations, and application to ground-truth data coupled with a bootstrap inferential test illustrates how our approach can also yield novel substantive insights that are obscured by standard statistical analyses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31600272</pmid><doi>10.1371/journal.pone.0223239</doi><tpages>e0223239</tpages><orcidid>https://orcid.org/0000-0002-0262-9959</orcidid><orcidid>https://orcid.org/0000-0003-0575-9211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-10, Vol.14 (10), p.e0223239-e0223239 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2303978915 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Sociological Abstracts; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Computer simulation Data Interpretation, Statistical Forecasting Forecasting - methods Fuzzy sets Identification methods Methods Models, Statistical Monte Carlo Method Monte Carlo methods People and Places Physical Sciences Research and Analysis Methods Research Design Social Sciences Sociology Statistical analysis Statistics (Mathematics) |
title | Precluding rare outcomes by predicting their absence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precluding%20rare%20outcomes%20by%20predicting%20their%20absence&rft.jtitle=PloS%20one&rft.au=Schoon,%20Eric%20W&rft.date=2019-10-10&rft.volume=14&rft.issue=10&rft.spage=e0223239&rft.epage=e0223239&rft.pages=e0223239-e0223239&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0223239&rft_dat=%3Cgale_plos_%3EA602311812%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303978915&rft_id=info:pmid/31600272&rft_galeid=A602311812&rft_doaj_id=oai_doaj_org_article_79913cf84a5b4d70ab6ab559dd7b711d&rfr_iscdi=true |