L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors

The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-10, Vol.14 (10), p.e0223272-e0223272
Hauptverfasser: Moffett, Steven X, Klein, Eric A, Brannigan, Grace, Martin, Joseph V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0223272
container_issue 10
container_start_page e0223272
container_title PloS one
container_volume 14
creator Moffett, Steven X
Klein, Eric A
Brannigan, Grace
Martin, Joseph V
description The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.
doi_str_mv 10.1371/journal.pone.0223272
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2300990094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601726298</galeid><doaj_id>oai_doaj_org_article_434c9e3171b64475a5ef8dc3bc45278b</doaj_id><sourcerecordid>A601726298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9c701d2d6f061f3ece5505325f65ea2e0788796ba6126cfb74304635cadac9013</originalsourceid><addsrcrecordid>eNqNk2tr2zAUhs3YWLtu_2BshsEuUGe6Wba_DErZJRAobN2-Clk-TlQUyZXksfz7KYlbktEPs7Bl5Od9j86RT5a9xGiGaYU_3rjRW2lmg7MwQ4RQUpFH2SluKCk4QfTxwftJ9iyEG4RKWnP-NDuhuKxZw8lp1i0Kek7fnZdF9Fq7zsXVxjurLeTSdvngYWnBOpOC5GE0vYyQa7vSrY75tfMDdC63Wrmo0zOXCuLGqJUzWwMPCobofHiePemlCfBims-yn18-X19-KxZXX-eXF4tC8YbEolEVwh3peI847mlSl2XaMil7XoIkgKq6rhreSo4JV31bMYoYp6WSnVQNwvQse733HYwLYipQEIQi1DTpZomY74nOyRsxeL2WfiOc1GK34PxSSB-1MiAYZaoBiivccsaqUpbQ152irWIlqeo2eX2aoo3tGjoFNnppjkyPv1i9Ekv3W_BqdyWD95OBd7cjhCjWOigwRlpw427fmDFC2DazN_-gD2c3UUuZEtC2dymu2pqKC45wRThp6kTNHqDS6GCdTtJCr9P6keDDkSAxEf7EpRxDEPMf3_-fvfp1zL49YFcgTVwFZ8aonQ3HINuDyrsQPPT3RcZIbJvhrhpi2wxiaoYke3V4QPeiu7-f_gWOEQQF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300990094</pqid></control><display><type>article</type><title>L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moffett, Steven X ; Klein, Eric A ; Brannigan, Grace ; Martin, Joseph V</creator><contributor>Hinton, Tina</contributor><creatorcontrib>Moffett, Steven X ; Klein, Eric A ; Brannigan, Grace ; Martin, Joseph V ; Hinton, Tina</creatorcontrib><description>The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH &lt; 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0223272</identifier><identifier>PMID: 31584962</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcholine receptors (nicotinic) ; Animals ; Anxiety ; Binding sites ; Biology ; Biology and Life Sciences ; Brain research ; Desensitization ; Dose-Response Relationship, Drug ; GABA ; GABA-A Receptor Antagonists - chemistry ; GABA-A Receptor Antagonists - pharmacology ; Homology ; Hormones ; Inhibitory Concentration 50 ; Ion channels ; Kinetics ; Ligands ; Medicine and Health Sciences ; Menopause ; Molecular Structure ; Nervous system ; Neurosciences ; Neurosteroids ; Nicotinic Antagonists - chemistry ; Nicotinic Antagonists - pharmacology ; Nicotinic receptors ; Oocytes - metabolism ; pH effects ; Phosphorylation ; Physical Sciences ; Pregnanolone ; Pregnenolone ; Pregnenolone - chemistry ; Pregnenolone - pharmacology ; Pregnenolone sulfate ; Progesterone ; Proteins ; Receptors ; Receptors, GABA-A - metabolism ; Receptors, Nicotinic - metabolism ; Research and Analysis Methods ; Rodents ; Sedatives ; Sleep ; Steroids (Drugs) ; Sulfates ; Surface active agents ; Thyroid ; Thyroid gland ; Thyroid hormones ; Torpedo - metabolism ; Triiodothyronine ; Triiodothyronine - chemistry ; Triiodothyronine - pharmacology ; γ-Aminobutyric acid A receptors</subject><ispartof>PloS one, 2019-10, Vol.14 (10), p.e0223272-e0223272</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Moffett et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Moffett et al 2019 Moffett et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9c701d2d6f061f3ece5505325f65ea2e0788796ba6126cfb74304635cadac9013</citedby><cites>FETCH-LOGICAL-c692t-9c701d2d6f061f3ece5505325f65ea2e0788796ba6126cfb74304635cadac9013</cites><orcidid>0000-0003-3757-3091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31584962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hinton, Tina</contributor><creatorcontrib>Moffett, Steven X</creatorcontrib><creatorcontrib>Klein, Eric A</creatorcontrib><creatorcontrib>Brannigan, Grace</creatorcontrib><creatorcontrib>Martin, Joseph V</creatorcontrib><title>L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH &lt; 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.</description><subject>Acetylcholine receptors (nicotinic)</subject><subject>Animals</subject><subject>Anxiety</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Desensitization</subject><subject>Dose-Response Relationship, Drug</subject><subject>GABA</subject><subject>GABA-A Receptor Antagonists - chemistry</subject><subject>GABA-A Receptor Antagonists - pharmacology</subject><subject>Homology</subject><subject>Hormones</subject><subject>Inhibitory Concentration 50</subject><subject>Ion channels</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Medicine and Health Sciences</subject><subject>Menopause</subject><subject>Molecular Structure</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Neurosteroids</subject><subject>Nicotinic Antagonists - chemistry</subject><subject>Nicotinic Antagonists - pharmacology</subject><subject>Nicotinic receptors</subject><subject>Oocytes - metabolism</subject><subject>pH effects</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Pregnanolone</subject><subject>Pregnenolone</subject><subject>Pregnenolone - chemistry</subject><subject>Pregnenolone - pharmacology</subject><subject>Pregnenolone sulfate</subject><subject>Progesterone</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Sedatives</subject><subject>Sleep</subject><subject>Steroids (Drugs)</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid hormones</subject><subject>Torpedo - metabolism</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - chemistry</subject><subject>Triiodothyronine - pharmacology</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr2zAUhs3YWLtu_2BshsEuUGe6Wba_DErZJRAobN2-Clk-TlQUyZXksfz7KYlbktEPs7Bl5Od9j86RT5a9xGiGaYU_3rjRW2lmg7MwQ4RQUpFH2SluKCk4QfTxwftJ9iyEG4RKWnP-NDuhuKxZw8lp1i0Kek7fnZdF9Fq7zsXVxjurLeTSdvngYWnBOpOC5GE0vYyQa7vSrY75tfMDdC63Wrmo0zOXCuLGqJUzWwMPCobofHiePemlCfBims-yn18-X19-KxZXX-eXF4tC8YbEolEVwh3peI847mlSl2XaMil7XoIkgKq6rhreSo4JV31bMYoYp6WSnVQNwvQse733HYwLYipQEIQi1DTpZomY74nOyRsxeL2WfiOc1GK34PxSSB-1MiAYZaoBiivccsaqUpbQ152irWIlqeo2eX2aoo3tGjoFNnppjkyPv1i9Ekv3W_BqdyWD95OBd7cjhCjWOigwRlpw427fmDFC2DazN_-gD2c3UUuZEtC2dymu2pqKC45wRThp6kTNHqDS6GCdTtJCr9P6keDDkSAxEf7EpRxDEPMf3_-fvfp1zL49YFcgTVwFZ8aonQ3HINuDyrsQPPT3RcZIbJvhrhpi2wxiaoYke3V4QPeiu7-f_gWOEQQF</recordid><startdate>20191004</startdate><enddate>20191004</enddate><creator>Moffett, Steven X</creator><creator>Klein, Eric A</creator><creator>Brannigan, Grace</creator><creator>Martin, Joseph V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3757-3091</orcidid></search><sort><creationdate>20191004</creationdate><title>L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors</title><author>Moffett, Steven X ; Klein, Eric A ; Brannigan, Grace ; Martin, Joseph V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9c701d2d6f061f3ece5505325f65ea2e0788796ba6126cfb74304635cadac9013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylcholine receptors (nicotinic)</topic><topic>Animals</topic><topic>Anxiety</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Desensitization</topic><topic>Dose-Response Relationship, Drug</topic><topic>GABA</topic><topic>GABA-A Receptor Antagonists - chemistry</topic><topic>GABA-A Receptor Antagonists - pharmacology</topic><topic>Homology</topic><topic>Hormones</topic><topic>Inhibitory Concentration 50</topic><topic>Ion channels</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Medicine and Health Sciences</topic><topic>Menopause</topic><topic>Molecular Structure</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Neurosteroids</topic><topic>Nicotinic Antagonists - chemistry</topic><topic>Nicotinic Antagonists - pharmacology</topic><topic>Nicotinic receptors</topic><topic>Oocytes - metabolism</topic><topic>pH effects</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Pregnanolone</topic><topic>Pregnenolone</topic><topic>Pregnenolone - chemistry</topic><topic>Pregnenolone - pharmacology</topic><topic>Pregnenolone sulfate</topic><topic>Progesterone</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Sedatives</topic><topic>Sleep</topic><topic>Steroids (Drugs)</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid hormones</topic><topic>Torpedo - metabolism</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - chemistry</topic><topic>Triiodothyronine - pharmacology</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moffett, Steven X</creatorcontrib><creatorcontrib>Klein, Eric A</creatorcontrib><creatorcontrib>Brannigan, Grace</creatorcontrib><creatorcontrib>Martin, Joseph V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moffett, Steven X</au><au>Klein, Eric A</au><au>Brannigan, Grace</au><au>Martin, Joseph V</au><au>Hinton, Tina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-10-04</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>e0223272</spage><epage>e0223272</epage><pages>e0223272-e0223272</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH &lt; 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31584962</pmid><doi>10.1371/journal.pone.0223272</doi><tpages>e0223272</tpages><orcidid>https://orcid.org/0000-0003-3757-3091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-10, Vol.14 (10), p.e0223272-e0223272
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2300990094
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylcholine receptors (nicotinic)
Animals
Anxiety
Binding sites
Biology
Biology and Life Sciences
Brain research
Desensitization
Dose-Response Relationship, Drug
GABA
GABA-A Receptor Antagonists - chemistry
GABA-A Receptor Antagonists - pharmacology
Homology
Hormones
Inhibitory Concentration 50
Ion channels
Kinetics
Ligands
Medicine and Health Sciences
Menopause
Molecular Structure
Nervous system
Neurosciences
Neurosteroids
Nicotinic Antagonists - chemistry
Nicotinic Antagonists - pharmacology
Nicotinic receptors
Oocytes - metabolism
pH effects
Phosphorylation
Physical Sciences
Pregnanolone
Pregnenolone
Pregnenolone - chemistry
Pregnenolone - pharmacology
Pregnenolone sulfate
Progesterone
Proteins
Receptors
Receptors, GABA-A - metabolism
Receptors, Nicotinic - metabolism
Research and Analysis Methods
Rodents
Sedatives
Sleep
Steroids (Drugs)
Sulfates
Surface active agents
Thyroid
Thyroid gland
Thyroid hormones
Torpedo - metabolism
Triiodothyronine
Triiodothyronine - chemistry
Triiodothyronine - pharmacology
γ-Aminobutyric acid A receptors
title L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L-3,3',5-triiodothyronine%20and%20pregnenolone%20sulfate%20inhibit%20Torpedo%20nicotinic%20acetylcholine%20receptors&rft.jtitle=PloS%20one&rft.au=Moffett,%20Steven%20X&rft.date=2019-10-04&rft.volume=14&rft.issue=10&rft.spage=e0223272&rft.epage=e0223272&rft.pages=e0223272-e0223272&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0223272&rft_dat=%3Cgale_plos_%3EA601726298%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300990094&rft_id=info:pmid/31584962&rft_galeid=A601726298&rft_doaj_id=oai_doaj_org_article_434c9e3171b64475a5ef8dc3bc45278b&rfr_iscdi=true