Improving the forecasting performance of temporal hierarchies

Temporal hierarchies have been widely used during the past few years as they are capable to provide more accurate coherent forecasts at different planning horizons. However, they still display some limitations, being mainly subject to the forecasting methods used for generating the base forecasts an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-10, Vol.14 (10), p.e0223422-e0223422
Hauptverfasser: Spiliotis, Evangelos, Petropoulos, Fotios, Assimakopoulos, Vassilios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0223422
container_issue 10
container_start_page e0223422
container_title PloS one
container_volume 14
creator Spiliotis, Evangelos
Petropoulos, Fotios
Assimakopoulos, Vassilios
description Temporal hierarchies have been widely used during the past few years as they are capable to provide more accurate coherent forecasts at different planning horizons. However, they still display some limitations, being mainly subject to the forecasting methods used for generating the base forecasts and the particularities of the examined series. This paper deals with such limitations by considering three different strategies: (i) combining forecasts of multiple methods, (ii) applying bias adjustments and (iii) selectively implementing temporal hierarchies to avoid seasonal shrinkage. The proposed strategies can be applied either separately or simultaneously, being complements to the method considered for reconciling the base forecasts and completely independent from each other. Their effect is evaluated using the monthly series of the M and M3 competitions. The results are very promising, displaying lots of potential for improving the performance of temporal hierarchies, both in terms of accuracy and bias.
doi_str_mv 10.1371/journal.pone.0223422
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2300607214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601625504</galeid><doaj_id>oai_doaj_org_article_b06b3feddc03402a92d7731a44d0327e</doaj_id><sourcerecordid>A601625504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8180a8dc3b44c62a50d4942a384fdc49774e4908c3aa281bc873fffa87191dfd3</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9EFQfRh19w2mXlQKMXLQqHg7TWcyWU2y8xkTDJFv73Z7rTsSB8kD0lOfuefc5J_UTzHaIWpwO92fgw9tKvB92aFCKGMkAfFKa4oWXKC6MOj9UnxJMYdQmtacv64OKF4XWKC8WnxftMNwV-7vlmkrVlYH4yCmPb7wYS87aBXZuHtIplu8AHaxdaZAEHlKT4tHlloo3k2zWfFj08fv198WV5efd5cnF8uFa9IWpa4RFBqRWvGFCewRppVjAAtmdWKVUIwwypUKgpASlyrUlBrLZQCV1hbTc-KlwfdofVRTp1HSShCHAmCWSY2B0J72MkhuA7CH-nByZuAD42EkJxqjawRr6k1WitEGSJQES0ExcCYRpQIk7U-TLeNdWe0Mn3Kfc9E5ye928rGX0suBKeYZ4E3k0Dwv0YTk-xcVKZtoTd-vKk7l0xRJTL66h_0_u4mqoHcgOutz_eqvag85whzsl6jPbW6h8pDm86pbBPrcnyW8HaWkJlkfqcGxhjl5tvX_2evfs7Z10fs1kCbttG3Y3K-j3OQHUAVfIzB2LtHxkjuXX77GnLvcjm5PKe9OP6gu6RbW9O_3QL18g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300607214</pqid></control><display><type>article</type><title>Improving the forecasting performance of temporal hierarchies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Spiliotis, Evangelos ; Petropoulos, Fotios ; Assimakopoulos, Vassilios</creator><contributor>Calcagnì, Antonio</contributor><creatorcontrib>Spiliotis, Evangelos ; Petropoulos, Fotios ; Assimakopoulos, Vassilios ; Calcagnì, Antonio</creatorcontrib><description>Temporal hierarchies have been widely used during the past few years as they are capable to provide more accurate coherent forecasts at different planning horizons. However, they still display some limitations, being mainly subject to the forecasting methods used for generating the base forecasts and the particularities of the examined series. This paper deals with such limitations by considering three different strategies: (i) combining forecasts of multiple methods, (ii) applying bias adjustments and (iii) selectively implementing temporal hierarchies to avoid seasonal shrinkage. The proposed strategies can be applied either separately or simultaneously, being complements to the method considered for reconciling the base forecasts and completely independent from each other. Their effect is evaluated using the monthly series of the M and M3 competitions. The results are very promising, displaying lots of potential for improving the performance of temporal hierarchies, both in terms of accuracy and bias.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0223422</identifier><identifier>PMID: 31581211</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Bias ; Biology and Life Sciences ; Competition ; Computer and Information Sciences ; Computer engineering ; Data smoothing ; Displays (Marketing) ; Earth Sciences ; Forecasting ; Hierarchies ; Humans ; Inferential statistics ; Management science ; Methods ; Models, Statistical ; Multilevel analysis ; Performance evaluation ; Physical Sciences ; Reproducibility of Results ; Research and Analysis Methods ; Seasons ; Shrinkage ; Social Sciences ; Spatio-Temporal Analysis ; Time series</subject><ispartof>PloS one, 2019-10, Vol.14 (10), p.e0223422-e0223422</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Spiliotis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Spiliotis et al 2019 Spiliotis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8180a8dc3b44c62a50d4942a384fdc49774e4908c3aa281bc873fffa87191dfd3</citedby><cites>FETCH-LOGICAL-c692t-8180a8dc3b44c62a50d4942a384fdc49774e4908c3aa281bc873fffa87191dfd3</cites><orcidid>0000-0003-3039-4955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776316/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776316/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31581211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Calcagnì, Antonio</contributor><creatorcontrib>Spiliotis, Evangelos</creatorcontrib><creatorcontrib>Petropoulos, Fotios</creatorcontrib><creatorcontrib>Assimakopoulos, Vassilios</creatorcontrib><title>Improving the forecasting performance of temporal hierarchies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Temporal hierarchies have been widely used during the past few years as they are capable to provide more accurate coherent forecasts at different planning horizons. However, they still display some limitations, being mainly subject to the forecasting methods used for generating the base forecasts and the particularities of the examined series. This paper deals with such limitations by considering three different strategies: (i) combining forecasts of multiple methods, (ii) applying bias adjustments and (iii) selectively implementing temporal hierarchies to avoid seasonal shrinkage. The proposed strategies can be applied either separately or simultaneously, being complements to the method considered for reconciling the base forecasts and completely independent from each other. Their effect is evaluated using the monthly series of the M and M3 competitions. The results are very promising, displaying lots of potential for improving the performance of temporal hierarchies, both in terms of accuracy and bias.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Competition</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Data smoothing</subject><subject>Displays (Marketing)</subject><subject>Earth Sciences</subject><subject>Forecasting</subject><subject>Hierarchies</subject><subject>Humans</subject><subject>Inferential statistics</subject><subject>Management science</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Multilevel analysis</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Seasons</subject><subject>Shrinkage</subject><subject>Social Sciences</subject><subject>Spatio-Temporal Analysis</subject><subject>Time series</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9EFQfRh19w2mXlQKMXLQqHg7TWcyWU2y8xkTDJFv73Z7rTsSB8kD0lOfuefc5J_UTzHaIWpwO92fgw9tKvB92aFCKGMkAfFKa4oWXKC6MOj9UnxJMYdQmtacv64OKF4XWKC8WnxftMNwV-7vlmkrVlYH4yCmPb7wYS87aBXZuHtIplu8AHaxdaZAEHlKT4tHlloo3k2zWfFj08fv198WV5efd5cnF8uFa9IWpa4RFBqRWvGFCewRppVjAAtmdWKVUIwwypUKgpASlyrUlBrLZQCV1hbTc-KlwfdofVRTp1HSShCHAmCWSY2B0J72MkhuA7CH-nByZuAD42EkJxqjawRr6k1WitEGSJQES0ExcCYRpQIk7U-TLeNdWe0Mn3Kfc9E5ye928rGX0suBKeYZ4E3k0Dwv0YTk-xcVKZtoTd-vKk7l0xRJTL66h_0_u4mqoHcgOutz_eqvag85whzsl6jPbW6h8pDm86pbBPrcnyW8HaWkJlkfqcGxhjl5tvX_2evfs7Z10fs1kCbttG3Y3K-j3OQHUAVfIzB2LtHxkjuXX77GnLvcjm5PKe9OP6gu6RbW9O_3QL18g</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Spiliotis, Evangelos</creator><creator>Petropoulos, Fotios</creator><creator>Assimakopoulos, Vassilios</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3039-4955</orcidid></search><sort><creationdate>20191003</creationdate><title>Improving the forecasting performance of temporal hierarchies</title><author>Spiliotis, Evangelos ; Petropoulos, Fotios ; Assimakopoulos, Vassilios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8180a8dc3b44c62a50d4942a384fdc49774e4908c3aa281bc873fffa87191dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Competition</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Data smoothing</topic><topic>Displays (Marketing)</topic><topic>Earth Sciences</topic><topic>Forecasting</topic><topic>Hierarchies</topic><topic>Humans</topic><topic>Inferential statistics</topic><topic>Management science</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Multilevel analysis</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Seasons</topic><topic>Shrinkage</topic><topic>Social Sciences</topic><topic>Spatio-Temporal Analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiliotis, Evangelos</creatorcontrib><creatorcontrib>Petropoulos, Fotios</creatorcontrib><creatorcontrib>Assimakopoulos, Vassilios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiliotis, Evangelos</au><au>Petropoulos, Fotios</au><au>Assimakopoulos, Vassilios</au><au>Calcagnì, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the forecasting performance of temporal hierarchies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>e0223422</spage><epage>e0223422</epage><pages>e0223422-e0223422</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Temporal hierarchies have been widely used during the past few years as they are capable to provide more accurate coherent forecasts at different planning horizons. However, they still display some limitations, being mainly subject to the forecasting methods used for generating the base forecasts and the particularities of the examined series. This paper deals with such limitations by considering three different strategies: (i) combining forecasts of multiple methods, (ii) applying bias adjustments and (iii) selectively implementing temporal hierarchies to avoid seasonal shrinkage. The proposed strategies can be applied either separately or simultaneously, being complements to the method considered for reconciling the base forecasts and completely independent from each other. Their effect is evaluated using the monthly series of the M and M3 competitions. The results are very promising, displaying lots of potential for improving the performance of temporal hierarchies, both in terms of accuracy and bias.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31581211</pmid><doi>10.1371/journal.pone.0223422</doi><tpages>e0223422</tpages><orcidid>https://orcid.org/0000-0003-3039-4955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-10, Vol.14 (10), p.e0223422-e0223422
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2300607214
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Bias
Biology and Life Sciences
Competition
Computer and Information Sciences
Computer engineering
Data smoothing
Displays (Marketing)
Earth Sciences
Forecasting
Hierarchies
Humans
Inferential statistics
Management science
Methods
Models, Statistical
Multilevel analysis
Performance evaluation
Physical Sciences
Reproducibility of Results
Research and Analysis Methods
Seasons
Shrinkage
Social Sciences
Spatio-Temporal Analysis
Time series
title Improving the forecasting performance of temporal hierarchies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20forecasting%20performance%20of%20temporal%20hierarchies&rft.jtitle=PloS%20one&rft.au=Spiliotis,%20Evangelos&rft.date=2019-10-03&rft.volume=14&rft.issue=10&rft.spage=e0223422&rft.epage=e0223422&rft.pages=e0223422-e0223422&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0223422&rft_dat=%3Cgale_plos_%3EA601625504%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300607214&rft_id=info:pmid/31581211&rft_galeid=A601625504&rft_doaj_id=oai_doaj_org_article_b06b3feddc03402a92d7731a44d0327e&rfr_iscdi=true