Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases
Quantitative MRI methods have recently gained extensive interest and are seeing substantial developments; however, their application in single patient vs control group comparisons is often limited by inherent statistical difficulties. One such application is detecting malformations of cortical devel...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-09, Vol.14 (9), p.e0222720 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0222720 |
container_title | PloS one |
container_volume | 14 |
creator | Gyebnár, Gyula Klimaj, Zoltán Entz, László Fabó, Dániel Rudas, Gábor Barsi, Péter Kozák, Lajos R |
description | Quantitative MRI methods have recently gained extensive interest and are seeing substantial developments; however, their application in single patient vs control group comparisons is often limited by inherent statistical difficulties. One such application is detecting malformations of cortical development (MCDs) behind drug resistant epilepsies, a task that, especially when based solely on conventional MR images, may represent a serious challenge. We aimed to develop a novel straightforward voxel-wise evaluation method based on the Mahalanobis-distance, combining quantitative MRI data into a multidimensional parameter space and detecting lesion voxels as outliers. Simulations with standard multivariate Gaussian distribution and resampled DTI-eigenvalue data of 45 healthy control subjects determined the optimal critical value, cluster size threshold, and the expectable lesion detection performance through ROC-analyses. To reduce the effect of false positives emanating from registration artefacts and gyrification differences, an automatic classification method was applied, fine-tuned using a leave-one-out strategy based on diffusion and T1-weighted data of the controls. DWI processing, including thorough corrections and robust tensor fitting was performed with ExploreDTI, spatial coregistration was achieved with the DARTEL tools of SPM12. Additional to simulations, clusters of outlying diffusion profile, concordant with neuroradiological evaluation and independent calculations with the MAP07 toolbox were identified in 12 cases of a 13 patient example population with various types of MCDs. The multidimensional approach proved sufficiently sensitive in pinpointing regions of abnormal tissue microstructure using DTI data both in simulations and in the heterogeneous example population. Inherent limitations posed by registration artefacts, age-related differences, and the different or mixed pathologies limit the generalization of specificity estimation. Nevertheless, the proposed statistical method may aid the everyday examination of individual subjects, ever so more upon extending the framework with quantitative information from other modalities, e.g. susceptibility mapping, relaxometry, or perfusion. |
doi_str_mv | 10.1371/journal.pone.0222720 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2296080717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600513126</galeid><doaj_id>oai_doaj_org_article_12519862481948abaeaea5d8e6f3d844</doaj_id><sourcerecordid>A600513126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bfc6d5ab62353aca55263b7d45854887c80caa9366d208e0e3a77a033f73b9873</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEolB4AwSWkDhI7JLYsePcIFXltFJRERRurYkz2XXljYPtVF2eiYfEe2jVRb1AvoiVfPNP5p-ZLHtS5NOCVcXbczf6Hux0cD1Oc0ppRfM72YOiZnQiaM7u3rgfZA9DOM9zzqQQ97MDVvCSSyYfZH--og8u6Zjf2JKl0d6F6EcdRw-W4AXYEaJxPRmD6ecEyBdYgIXeNSZMWhMi9BpJAyFFuzFag560GFFvgpIURJyvSLrjYCwOYUWGJIh9DC_J-7MZaSECmZCzBTq_ekOCWY52kzEQ6FuCl7AcLBKdMoRH2b0ObMDHu-dh9uPjh7Pjz5OT00-z46OTiRY1jZOm06Ll0AjKOAMNnFPBmqpNJfNSykrLXAPUTIiW5hJzZFBVkDPWVaypZcUOs2db3cG6oHZGB0VpLXKZV8WamG2J1sG5GrxZgl8pB0ZtXjg_V-Cj0RZVQXlRS0FLWdSlhAYwHd5KFB1rZVkmrXe7bGOzxFYnb5L3e6L7X3qzUHN3oUTFBWcsCbzaCXj3a8QQ1dIEjTa1Cd24_W_BaV3LhD7_B729uh01h1SA6TuX8uq1qDoSaYoKViRHD7PpLVQ6LaY5SlPZpYbvB7zeC0hMxMs4hzEENfv-7f_Z05_77Isb7ALBxkVwdtxM0T5YbsH1lAeP3bXJRa7WS3XlhlovldotVQp7erNB10FXW8T-AvMAH1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296080717</pqid></control><display><type>article</type><title>Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Gyebnár, Gyula ; Klimaj, Zoltán ; Entz, László ; Fabó, Dániel ; Rudas, Gábor ; Barsi, Péter ; Kozák, Lajos R</creator><creatorcontrib>Gyebnár, Gyula ; Klimaj, Zoltán ; Entz, László ; Fabó, Dániel ; Rudas, Gábor ; Barsi, Péter ; Kozák, Lajos R</creatorcontrib><description>Quantitative MRI methods have recently gained extensive interest and are seeing substantial developments; however, their application in single patient vs control group comparisons is often limited by inherent statistical difficulties. One such application is detecting malformations of cortical development (MCDs) behind drug resistant epilepsies, a task that, especially when based solely on conventional MR images, may represent a serious challenge. We aimed to develop a novel straightforward voxel-wise evaluation method based on the Mahalanobis-distance, combining quantitative MRI data into a multidimensional parameter space and detecting lesion voxels as outliers. Simulations with standard multivariate Gaussian distribution and resampled DTI-eigenvalue data of 45 healthy control subjects determined the optimal critical value, cluster size threshold, and the expectable lesion detection performance through ROC-analyses. To reduce the effect of false positives emanating from registration artefacts and gyrification differences, an automatic classification method was applied, fine-tuned using a leave-one-out strategy based on diffusion and T1-weighted data of the controls. DWI processing, including thorough corrections and robust tensor fitting was performed with ExploreDTI, spatial coregistration was achieved with the DARTEL tools of SPM12. Additional to simulations, clusters of outlying diffusion profile, concordant with neuroradiological evaluation and independent calculations with the MAP07 toolbox were identified in 12 cases of a 13 patient example population with various types of MCDs. The multidimensional approach proved sufficiently sensitive in pinpointing regions of abnormal tissue microstructure using DTI data both in simulations and in the heterogeneous example population. Inherent limitations posed by registration artefacts, age-related differences, and the different or mixed pathologies limit the generalization of specificity estimation. Nevertheless, the proposed statistical method may aid the everyday examination of individual subjects, ever so more upon extending the framework with quantitative information from other modalities, e.g. susceptibility mapping, relaxometry, or perfusion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0222720</identifier><identifier>PMID: 31545838</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Age ; Algorithms ; Artificial intelligence ; Biology and Life Sciences ; Brain ; Brain research ; Child ; Computer and Information Sciences ; Cortex ; Data analysis ; Diagnosis ; Diagnostic imaging ; Diffusion ; Diffusion Tensor Imaging - methods ; Drug resistance ; Eigenvalues ; Epilepsy ; Epilepsy - diagnostic imaging ; Epilepsy - pathology ; Evaluation ; Female ; Gaussian processes ; Gene mapping ; Gray Matter - diagnostic imaging ; Gray Matter - pathology ; Health aspects ; Humans ; Image Processing, Computer-Assisted - methods ; Lesions ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Mapping ; Mathematical analysis ; Medical imaging ; Medicine and Health Sciences ; Methods ; Microstructure ; Middle Aged ; Neuroimaging ; Neurosciences ; NMR ; Normal distribution ; Novels ; Nuclear magnetic resonance ; Outliers (statistics) ; Patients ; Perfusion ; Physical Sciences ; Precision Medicine - methods ; Research and Analysis Methods ; ROC Curve ; Simulation ; Statistical analysis ; Statistical methods ; Statistics ; Tensors ; White Matter - diagnostic imaging ; White Matter - pathology ; Young Adult</subject><ispartof>PloS one, 2019-09, Vol.14 (9), p.e0222720</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Gyebnár et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Gyebnár et al 2019 Gyebnár et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bfc6d5ab62353aca55263b7d45854887c80caa9366d208e0e3a77a033f73b9873</citedby><cites>FETCH-LOGICAL-c692t-bfc6d5ab62353aca55263b7d45854887c80caa9366d208e0e3a77a033f73b9873</cites><orcidid>0000-0001-9700-5382 ; 0000-0003-4411-2330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31545838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyebnár, Gyula</creatorcontrib><creatorcontrib>Klimaj, Zoltán</creatorcontrib><creatorcontrib>Entz, László</creatorcontrib><creatorcontrib>Fabó, Dániel</creatorcontrib><creatorcontrib>Rudas, Gábor</creatorcontrib><creatorcontrib>Barsi, Péter</creatorcontrib><creatorcontrib>Kozák, Lajos R</creatorcontrib><title>Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Quantitative MRI methods have recently gained extensive interest and are seeing substantial developments; however, their application in single patient vs control group comparisons is often limited by inherent statistical difficulties. One such application is detecting malformations of cortical development (MCDs) behind drug resistant epilepsies, a task that, especially when based solely on conventional MR images, may represent a serious challenge. We aimed to develop a novel straightforward voxel-wise evaluation method based on the Mahalanobis-distance, combining quantitative MRI data into a multidimensional parameter space and detecting lesion voxels as outliers. Simulations with standard multivariate Gaussian distribution and resampled DTI-eigenvalue data of 45 healthy control subjects determined the optimal critical value, cluster size threshold, and the expectable lesion detection performance through ROC-analyses. To reduce the effect of false positives emanating from registration artefacts and gyrification differences, an automatic classification method was applied, fine-tuned using a leave-one-out strategy based on diffusion and T1-weighted data of the controls. DWI processing, including thorough corrections and robust tensor fitting was performed with ExploreDTI, spatial coregistration was achieved with the DARTEL tools of SPM12. Additional to simulations, clusters of outlying diffusion profile, concordant with neuroradiological evaluation and independent calculations with the MAP07 toolbox were identified in 12 cases of a 13 patient example population with various types of MCDs. The multidimensional approach proved sufficiently sensitive in pinpointing regions of abnormal tissue microstructure using DTI data both in simulations and in the heterogeneous example population. Inherent limitations posed by registration artefacts, age-related differences, and the different or mixed pathologies limit the generalization of specificity estimation. Nevertheless, the proposed statistical method may aid the everyday examination of individual subjects, ever so more upon extending the framework with quantitative information from other modalities, e.g. susceptibility mapping, relaxometry, or perfusion.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain research</subject><subject>Child</subject><subject>Computer and Information Sciences</subject><subject>Cortex</subject><subject>Data analysis</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Diffusion</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Drug resistance</subject><subject>Eigenvalues</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnostic imaging</subject><subject>Epilepsy - pathology</subject><subject>Evaluation</subject><subject>Female</subject><subject>Gaussian processes</subject><subject>Gene mapping</subject><subject>Gray Matter - diagnostic imaging</subject><subject>Gray Matter - pathology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Middle Aged</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Normal distribution</subject><subject>Novels</subject><subject>Nuclear magnetic resonance</subject><subject>Outliers (statistics)</subject><subject>Patients</subject><subject>Perfusion</subject><subject>Physical Sciences</subject><subject>Precision Medicine - methods</subject><subject>Research and Analysis Methods</subject><subject>ROC Curve</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Tensors</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - pathology</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEolB4AwSWkDhI7JLYsePcIFXltFJRERRurYkz2XXljYPtVF2eiYfEe2jVRb1AvoiVfPNP5p-ZLHtS5NOCVcXbczf6Hux0cD1Oc0ppRfM72YOiZnQiaM7u3rgfZA9DOM9zzqQQ97MDVvCSSyYfZH--og8u6Zjf2JKl0d6F6EcdRw-W4AXYEaJxPRmD6ecEyBdYgIXeNSZMWhMi9BpJAyFFuzFag560GFFvgpIURJyvSLrjYCwOYUWGJIh9DC_J-7MZaSECmZCzBTq_ekOCWY52kzEQ6FuCl7AcLBKdMoRH2b0ObMDHu-dh9uPjh7Pjz5OT00-z46OTiRY1jZOm06Ll0AjKOAMNnFPBmqpNJfNSykrLXAPUTIiW5hJzZFBVkDPWVaypZcUOs2db3cG6oHZGB0VpLXKZV8WamG2J1sG5GrxZgl8pB0ZtXjg_V-Cj0RZVQXlRS0FLWdSlhAYwHd5KFB1rZVkmrXe7bGOzxFYnb5L3e6L7X3qzUHN3oUTFBWcsCbzaCXj3a8QQ1dIEjTa1Cd24_W_BaV3LhD7_B729uh01h1SA6TuX8uq1qDoSaYoKViRHD7PpLVQ6LaY5SlPZpYbvB7zeC0hMxMs4hzEENfv-7f_Z05_77Isb7ALBxkVwdtxM0T5YbsH1lAeP3bXJRa7WS3XlhlovldotVQp7erNB10FXW8T-AvMAH1I</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Gyebnár, Gyula</creator><creator>Klimaj, Zoltán</creator><creator>Entz, László</creator><creator>Fabó, Dániel</creator><creator>Rudas, Gábor</creator><creator>Barsi, Péter</creator><creator>Kozák, Lajos R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9700-5382</orcidid><orcidid>https://orcid.org/0000-0003-4411-2330</orcidid></search><sort><creationdate>20190923</creationdate><title>Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases</title><author>Gyebnár, Gyula ; Klimaj, Zoltán ; Entz, László ; Fabó, Dániel ; Rudas, Gábor ; Barsi, Péter ; Kozák, Lajos R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bfc6d5ab62353aca55263b7d45854887c80caa9366d208e0e3a77a033f73b9873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain research</topic><topic>Child</topic><topic>Computer and Information Sciences</topic><topic>Cortex</topic><topic>Data analysis</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Diffusion</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Drug resistance</topic><topic>Eigenvalues</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnostic imaging</topic><topic>Epilepsy - pathology</topic><topic>Evaluation</topic><topic>Female</topic><topic>Gaussian processes</topic><topic>Gene mapping</topic><topic>Gray Matter - diagnostic imaging</topic><topic>Gray Matter - pathology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Middle Aged</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Normal distribution</topic><topic>Novels</topic><topic>Nuclear magnetic resonance</topic><topic>Outliers (statistics)</topic><topic>Patients</topic><topic>Perfusion</topic><topic>Physical Sciences</topic><topic>Precision Medicine - methods</topic><topic>Research and Analysis Methods</topic><topic>ROC Curve</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Tensors</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - pathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyebnár, Gyula</creatorcontrib><creatorcontrib>Klimaj, Zoltán</creatorcontrib><creatorcontrib>Entz, László</creatorcontrib><creatorcontrib>Fabó, Dániel</creatorcontrib><creatorcontrib>Rudas, Gábor</creatorcontrib><creatorcontrib>Barsi, Péter</creatorcontrib><creatorcontrib>Kozák, Lajos R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyebnár, Gyula</au><au>Klimaj, Zoltán</au><au>Entz, László</au><au>Fabó, Dániel</au><au>Rudas, Gábor</au><au>Barsi, Péter</au><au>Kozák, Lajos R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-09-23</date><risdate>2019</risdate><volume>14</volume><issue>9</issue><spage>e0222720</spage><pages>e0222720-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Quantitative MRI methods have recently gained extensive interest and are seeing substantial developments; however, their application in single patient vs control group comparisons is often limited by inherent statistical difficulties. One such application is detecting malformations of cortical development (MCDs) behind drug resistant epilepsies, a task that, especially when based solely on conventional MR images, may represent a serious challenge. We aimed to develop a novel straightforward voxel-wise evaluation method based on the Mahalanobis-distance, combining quantitative MRI data into a multidimensional parameter space and detecting lesion voxels as outliers. Simulations with standard multivariate Gaussian distribution and resampled DTI-eigenvalue data of 45 healthy control subjects determined the optimal critical value, cluster size threshold, and the expectable lesion detection performance through ROC-analyses. To reduce the effect of false positives emanating from registration artefacts and gyrification differences, an automatic classification method was applied, fine-tuned using a leave-one-out strategy based on diffusion and T1-weighted data of the controls. DWI processing, including thorough corrections and robust tensor fitting was performed with ExploreDTI, spatial coregistration was achieved with the DARTEL tools of SPM12. Additional to simulations, clusters of outlying diffusion profile, concordant with neuroradiological evaluation and independent calculations with the MAP07 toolbox were identified in 12 cases of a 13 patient example population with various types of MCDs. The multidimensional approach proved sufficiently sensitive in pinpointing regions of abnormal tissue microstructure using DTI data both in simulations and in the heterogeneous example population. Inherent limitations posed by registration artefacts, age-related differences, and the different or mixed pathologies limit the generalization of specificity estimation. Nevertheless, the proposed statistical method may aid the everyday examination of individual subjects, ever so more upon extending the framework with quantitative information from other modalities, e.g. susceptibility mapping, relaxometry, or perfusion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31545838</pmid><doi>10.1371/journal.pone.0222720</doi><tpages>e0222720</tpages><orcidid>https://orcid.org/0000-0001-9700-5382</orcidid><orcidid>https://orcid.org/0000-0003-4411-2330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-09, Vol.14 (9), p.e0222720 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2296080717 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adolescent Adult Age Algorithms Artificial intelligence Biology and Life Sciences Brain Brain research Child Computer and Information Sciences Cortex Data analysis Diagnosis Diagnostic imaging Diffusion Diffusion Tensor Imaging - methods Drug resistance Eigenvalues Epilepsy Epilepsy - diagnostic imaging Epilepsy - pathology Evaluation Female Gaussian processes Gene mapping Gray Matter - diagnostic imaging Gray Matter - pathology Health aspects Humans Image Processing, Computer-Assisted - methods Lesions Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Mapping Mathematical analysis Medical imaging Medicine and Health Sciences Methods Microstructure Middle Aged Neuroimaging Neurosciences NMR Normal distribution Novels Nuclear magnetic resonance Outliers (statistics) Patients Perfusion Physical Sciences Precision Medicine - methods Research and Analysis Methods ROC Curve Simulation Statistical analysis Statistical methods Statistics Tensors White Matter - diagnostic imaging White Matter - pathology Young Adult |
title | Personalized microstructural evaluation using a Mahalanobis-distance based outlier detection strategy on epilepsy patients' DTI data - Theory, simulations and example cases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20microstructural%20evaluation%20using%20a%20Mahalanobis-distance%20based%20outlier%20detection%20strategy%20on%20epilepsy%20patients'%20DTI%20data%20-%20Theory,%20simulations%20and%20example%20cases&rft.jtitle=PloS%20one&rft.au=Gyebn%C3%A1r,%20Gyula&rft.date=2019-09-23&rft.volume=14&rft.issue=9&rft.spage=e0222720&rft.pages=e0222720-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0222720&rft_dat=%3Cgale_plos_%3EA600513126%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296080717&rft_id=info:pmid/31545838&rft_galeid=A600513126&rft_doaj_id=oai_doaj_org_article_12519862481948abaeaea5d8e6f3d844&rfr_iscdi=true |