Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome

A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2019-08, Vol.13 (8), p.e0007629
Hauptverfasser: Chavy, Agathe, Ferreira Dales Nava, Alessandra, Luz, Sergio Luiz Bessa, Ramírez, Juan David, Herrera, Giovanny, Vasconcelos Dos Santos, Thiago, Ginouves, Marine, Demar, Magalie, Prévot, Ghislaine, Guégan, Jean-François, de Thoisy, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0007629
container_title PLoS neglected tropical diseases
container_volume 13
creator Chavy, Agathe
Ferreira Dales Nava, Alessandra
Luz, Sergio Luiz Bessa
Ramírez, Juan David
Herrera, Giovanny
Vasconcelos Dos Santos, Thiago
Ginouves, Marine
Demar, Magalie
Prévot, Ghislaine
Guégan, Jean-François
de Thoisy, Benoît
description A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.
doi_str_mv 10.1371/journal.pntd.0007629
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291479938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598978984</galeid><doaj_id>oai_doaj_org_article_aedf0cbbfe544aadbb74dcbb9177023f</doaj_id><sourcerecordid>A598978984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</originalsourceid><addsrcrecordid>eNp1Ul2LEzEUHURx19V_IDogCD60Tj6mmbwIZVndhaIv-hzy2UnNJDXJLPjvzbSzSytKHpJ7c865OTe3ql6DZgkQAR93YYyeu-XeZ7VsmoasIH1SXQKK2gUkqH16cr6oXqS0a5qWth14Xl0ggAFsILys0o0MLmyt5K72Vva6HoLSzlm_rU2I9T5qZWWewlwuo00_62BqOWbudRhT7bRN_cC95cmm2voD7KsOOYb9QXUINuVJS5dN2DDol9Uzw13Sr-b9qvrx-eb79e1i8-3L3fV6s5CrtssLsxIKU6MkMS1XHSS6JapYgFR0BkHTcEkEhooSKkRHkcSQYISQ5kYAXrxfVW-PunsXEpv7lRiEFGBCKeoK4u6IUIHv2D7agcffLHDLDokQt4zHbKXTjGtlGimE0S3GnCshCFYlpoCQBiJTtD7N1UYxaCW1z5G7M9HzG297tg33bLWiiKDpuR-OAv1ftNv1hk25UoZCAvE9KNh3c7EYfo2ls_-xN6O2vDiw3pRf4XKwSbJ1SztKOtrhglr-A1WW0oOVwWtjS_6M8P6E0Gvucp-CG7MNPp0D8REoY0gpavNoCzRsGuKHV7NpiNk8xIX25rSTj6SHqUV_APDE8Rk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291479938</pqid></control><display><type>article</type><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</creator><creatorcontrib>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</creatorcontrib><description>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0007629</identifier><identifier>PMID: 31412022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anthropogenic factors ; Biodiversity ; Biology and Life Sciences ; Biomes ; Communicable diseases ; Cutaneous leishmaniasis ; Deforestation ; Disease transmission ; Ecological distribution ; Ecological effects ; Ecological niches ; Ecology ; Ecology and Environmental Sciences ; Ecology, environment ; Ecosystem ; Ecosystems ; Environmental aspects ; Environmental factors ; Environmental impact ; Epidemiology ; Forest ecosystems ; Forests ; French Guiana - epidemiology ; Geography ; Health ; Health aspects ; Health risks ; Heterogeneity ; Human health and pathology ; Human impact ; Human influences ; Human-environment relationship ; Humans ; Infectious diseases ; Influence ; Leishmaniasis ; Leishmaniasis, Cutaneous - epidemiology ; Life Sciences ; Medicine and Health Sciences ; Modelling ; Niches ; Niches (Ecology) ; Parasitic diseases ; Predictions ; Prevalence ; Public health ; Risk assessment ; Risk factors ; Santé publique et épidémiologie ; Seasons ; South America - epidemiology ; Terrestrial ecosystems ; Transmission ; Tropical diseases ; Vector-borne diseases ; Vectors ; Vectors (Biology)</subject><ispartof>PLoS neglected tropical diseases, 2019-08, Vol.13 (8), p.e0007629</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Chavy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2019 Chavy et al 2019 Chavy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</citedby><cites>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</cites><orcidid>0000-0002-1344-9312 ; 0000-0002-8420-5112 ; 0000-0002-7268-4953 ; 0000-0002-7218-107X ; 0000-0003-3104-3209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31412022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02392724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavy, Agathe</creatorcontrib><creatorcontrib>Ferreira Dales Nava, Alessandra</creatorcontrib><creatorcontrib>Luz, Sergio Luiz Bessa</creatorcontrib><creatorcontrib>Ramírez, Juan David</creatorcontrib><creatorcontrib>Herrera, Giovanny</creatorcontrib><creatorcontrib>Vasconcelos Dos Santos, Thiago</creatorcontrib><creatorcontrib>Ginouves, Marine</creatorcontrib><creatorcontrib>Demar, Magalie</creatorcontrib><creatorcontrib>Prévot, Ghislaine</creatorcontrib><creatorcontrib>Guégan, Jean-François</creatorcontrib><creatorcontrib>de Thoisy, Benoît</creatorcontrib><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</description><subject>Anthropogenic factors</subject><subject>Biodiversity</subject><subject>Biology and Life Sciences</subject><subject>Biomes</subject><subject>Communicable diseases</subject><subject>Cutaneous leishmaniasis</subject><subject>Deforestation</subject><subject>Disease transmission</subject><subject>Ecological distribution</subject><subject>Ecological effects</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecology, environment</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental aspects</subject><subject>Environmental factors</subject><subject>Environmental impact</subject><subject>Epidemiology</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>French Guiana - epidemiology</subject><subject>Geography</subject><subject>Health</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Heterogeneity</subject><subject>Human health and pathology</subject><subject>Human impact</subject><subject>Human influences</subject><subject>Human-environment relationship</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influence</subject><subject>Leishmaniasis</subject><subject>Leishmaniasis, Cutaneous - epidemiology</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Niches</subject><subject>Niches (Ecology)</subject><subject>Parasitic diseases</subject><subject>Predictions</subject><subject>Prevalence</subject><subject>Public health</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Santé publique et épidémiologie</subject><subject>Seasons</subject><subject>South America - epidemiology</subject><subject>Terrestrial ecosystems</subject><subject>Transmission</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>Vectors (Biology)</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul2LEzEUHURx19V_IDogCD60Tj6mmbwIZVndhaIv-hzy2UnNJDXJLPjvzbSzSytKHpJ7c865OTe3ql6DZgkQAR93YYyeu-XeZ7VsmoasIH1SXQKK2gUkqH16cr6oXqS0a5qWth14Xl0ggAFsILys0o0MLmyt5K72Vva6HoLSzlm_rU2I9T5qZWWewlwuo00_62BqOWbudRhT7bRN_cC95cmm2voD7KsOOYb9QXUINuVJS5dN2DDol9Uzw13Sr-b9qvrx-eb79e1i8-3L3fV6s5CrtssLsxIKU6MkMS1XHSS6JapYgFR0BkHTcEkEhooSKkRHkcSQYISQ5kYAXrxfVW-PunsXEpv7lRiEFGBCKeoK4u6IUIHv2D7agcffLHDLDokQt4zHbKXTjGtlGimE0S3GnCshCFYlpoCQBiJTtD7N1UYxaCW1z5G7M9HzG297tg33bLWiiKDpuR-OAv1ftNv1hk25UoZCAvE9KNh3c7EYfo2ls_-xN6O2vDiw3pRf4XKwSbJ1SztKOtrhglr-A1WW0oOVwWtjS_6M8P6E0Gvucp-CG7MNPp0D8REoY0gpavNoCzRsGuKHV7NpiNk8xIX25rSTj6SHqUV_APDE8Rk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chavy, Agathe</creator><creator>Ferreira Dales Nava, Alessandra</creator><creator>Luz, Sergio Luiz Bessa</creator><creator>Ramírez, Juan David</creator><creator>Herrera, Giovanny</creator><creator>Vasconcelos Dos Santos, Thiago</creator><creator>Ginouves, Marine</creator><creator>Demar, Magalie</creator><creator>Prévot, Ghislaine</creator><creator>Guégan, Jean-François</creator><creator>de Thoisy, Benoît</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1344-9312</orcidid><orcidid>https://orcid.org/0000-0002-8420-5112</orcidid><orcidid>https://orcid.org/0000-0002-7268-4953</orcidid><orcidid>https://orcid.org/0000-0002-7218-107X</orcidid><orcidid>https://orcid.org/0000-0003-3104-3209</orcidid></search><sort><creationdate>20190801</creationdate><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><author>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Biodiversity</topic><topic>Biology and Life Sciences</topic><topic>Biomes</topic><topic>Communicable diseases</topic><topic>Cutaneous leishmaniasis</topic><topic>Deforestation</topic><topic>Disease transmission</topic><topic>Ecological distribution</topic><topic>Ecological effects</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecology, environment</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental aspects</topic><topic>Environmental factors</topic><topic>Environmental impact</topic><topic>Epidemiology</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>French Guiana - epidemiology</topic><topic>Geography</topic><topic>Health</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Heterogeneity</topic><topic>Human health and pathology</topic><topic>Human impact</topic><topic>Human influences</topic><topic>Human-environment relationship</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influence</topic><topic>Leishmaniasis</topic><topic>Leishmaniasis, Cutaneous - epidemiology</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Niches</topic><topic>Niches (Ecology)</topic><topic>Parasitic diseases</topic><topic>Predictions</topic><topic>Prevalence</topic><topic>Public health</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Santé publique et épidémiologie</topic><topic>Seasons</topic><topic>South America - epidemiology</topic><topic>Terrestrial ecosystems</topic><topic>Transmission</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavy, Agathe</creatorcontrib><creatorcontrib>Ferreira Dales Nava, Alessandra</creatorcontrib><creatorcontrib>Luz, Sergio Luiz Bessa</creatorcontrib><creatorcontrib>Ramírez, Juan David</creatorcontrib><creatorcontrib>Herrera, Giovanny</creatorcontrib><creatorcontrib>Vasconcelos Dos Santos, Thiago</creatorcontrib><creatorcontrib>Ginouves, Marine</creatorcontrib><creatorcontrib>Demar, Magalie</creatorcontrib><creatorcontrib>Prévot, Ghislaine</creatorcontrib><creatorcontrib>Guégan, Jean-François</creatorcontrib><creatorcontrib>de Thoisy, Benoît</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavy, Agathe</au><au>Ferreira Dales Nava, Alessandra</au><au>Luz, Sergio Luiz Bessa</au><au>Ramírez, Juan David</au><au>Herrera, Giovanny</au><au>Vasconcelos Dos Santos, Thiago</au><au>Ginouves, Marine</au><au>Demar, Magalie</au><au>Prévot, Ghislaine</au><au>Guégan, Jean-François</au><au>de Thoisy, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>8</issue><spage>e0007629</spage><pages>e0007629-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31412022</pmid><doi>10.1371/journal.pntd.0007629</doi><orcidid>https://orcid.org/0000-0002-1344-9312</orcidid><orcidid>https://orcid.org/0000-0002-8420-5112</orcidid><orcidid>https://orcid.org/0000-0002-7268-4953</orcidid><orcidid>https://orcid.org/0000-0002-7218-107X</orcidid><orcidid>https://orcid.org/0000-0003-3104-3209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2019-08, Vol.13 (8), p.e0007629
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_2291479938
source Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Anthropogenic factors
Biodiversity
Biology and Life Sciences
Biomes
Communicable diseases
Cutaneous leishmaniasis
Deforestation
Disease transmission
Ecological distribution
Ecological effects
Ecological niches
Ecology
Ecology and Environmental Sciences
Ecology, environment
Ecosystem
Ecosystems
Environmental aspects
Environmental factors
Environmental impact
Epidemiology
Forest ecosystems
Forests
French Guiana - epidemiology
Geography
Health
Health aspects
Health risks
Heterogeneity
Human health and pathology
Human impact
Human influences
Human-environment relationship
Humans
Infectious diseases
Influence
Leishmaniasis
Leishmaniasis, Cutaneous - epidemiology
Life Sciences
Medicine and Health Sciences
Modelling
Niches
Niches (Ecology)
Parasitic diseases
Predictions
Prevalence
Public health
Risk assessment
Risk factors
Santé publique et épidémiologie
Seasons
South America - epidemiology
Terrestrial ecosystems
Transmission
Tropical diseases
Vector-borne diseases
Vectors
Vectors (Biology)
title Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20niche%20modelling%20for%20predicting%20the%20risk%20of%20cutaneous%20leishmaniasis%20in%20the%20Neotropical%20moist%20forest%20biome&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Chavy,%20Agathe&rft.date=2019-08-01&rft.volume=13&rft.issue=8&rft.spage=e0007629&rft.pages=e0007629-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0007629&rft_dat=%3Cgale_plos_%3EA598978984%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291479938&rft_id=info:pmid/31412022&rft_galeid=A598978984&rft_doaj_id=oai_doaj_org_article_aedf0cbbfe544aadbb74dcbb9177023f&rfr_iscdi=true