Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome
A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the f...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2019-08, Vol.13 (8), p.e0007629 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0007629 |
container_title | PLoS neglected tropical diseases |
container_volume | 13 |
creator | Chavy, Agathe Ferreira Dales Nava, Alessandra Luz, Sergio Luiz Bessa Ramírez, Juan David Herrera, Giovanny Vasconcelos Dos Santos, Thiago Ginouves, Marine Demar, Magalie Prévot, Ghislaine Guégan, Jean-François de Thoisy, Benoît |
description | A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America. |
doi_str_mv | 10.1371/journal.pntd.0007629 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291479938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598978984</galeid><doaj_id>oai_doaj_org_article_aedf0cbbfe544aadbb74dcbb9177023f</doaj_id><sourcerecordid>A598978984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</originalsourceid><addsrcrecordid>eNp1Ul2LEzEUHURx19V_IDogCD60Tj6mmbwIZVndhaIv-hzy2UnNJDXJLPjvzbSzSytKHpJ7c865OTe3ql6DZgkQAR93YYyeu-XeZ7VsmoasIH1SXQKK2gUkqH16cr6oXqS0a5qWth14Xl0ggAFsILys0o0MLmyt5K72Vva6HoLSzlm_rU2I9T5qZWWewlwuo00_62BqOWbudRhT7bRN_cC95cmm2voD7KsOOYb9QXUINuVJS5dN2DDol9Uzw13Sr-b9qvrx-eb79e1i8-3L3fV6s5CrtssLsxIKU6MkMS1XHSS6JapYgFR0BkHTcEkEhooSKkRHkcSQYISQ5kYAXrxfVW-PunsXEpv7lRiEFGBCKeoK4u6IUIHv2D7agcffLHDLDokQt4zHbKXTjGtlGimE0S3GnCshCFYlpoCQBiJTtD7N1UYxaCW1z5G7M9HzG297tg33bLWiiKDpuR-OAv1ftNv1hk25UoZCAvE9KNh3c7EYfo2ls_-xN6O2vDiw3pRf4XKwSbJ1SztKOtrhglr-A1WW0oOVwWtjS_6M8P6E0Gvucp-CG7MNPp0D8REoY0gpavNoCzRsGuKHV7NpiNk8xIX25rSTj6SHqUV_APDE8Rk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291479938</pqid></control><display><type>article</type><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</creator><creatorcontrib>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</creatorcontrib><description>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0007629</identifier><identifier>PMID: 31412022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anthropogenic factors ; Biodiversity ; Biology and Life Sciences ; Biomes ; Communicable diseases ; Cutaneous leishmaniasis ; Deforestation ; Disease transmission ; Ecological distribution ; Ecological effects ; Ecological niches ; Ecology ; Ecology and Environmental Sciences ; Ecology, environment ; Ecosystem ; Ecosystems ; Environmental aspects ; Environmental factors ; Environmental impact ; Epidemiology ; Forest ecosystems ; Forests ; French Guiana - epidemiology ; Geography ; Health ; Health aspects ; Health risks ; Heterogeneity ; Human health and pathology ; Human impact ; Human influences ; Human-environment relationship ; Humans ; Infectious diseases ; Influence ; Leishmaniasis ; Leishmaniasis, Cutaneous - epidemiology ; Life Sciences ; Medicine and Health Sciences ; Modelling ; Niches ; Niches (Ecology) ; Parasitic diseases ; Predictions ; Prevalence ; Public health ; Risk assessment ; Risk factors ; Santé publique et épidémiologie ; Seasons ; South America - epidemiology ; Terrestrial ecosystems ; Transmission ; Tropical diseases ; Vector-borne diseases ; Vectors ; Vectors (Biology)</subject><ispartof>PLoS neglected tropical diseases, 2019-08, Vol.13 (8), p.e0007629</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Chavy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2019 Chavy et al 2019 Chavy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</citedby><cites>FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</cites><orcidid>0000-0002-1344-9312 ; 0000-0002-8420-5112 ; 0000-0002-7268-4953 ; 0000-0002-7218-107X ; 0000-0003-3104-3209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31412022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02392724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavy, Agathe</creatorcontrib><creatorcontrib>Ferreira Dales Nava, Alessandra</creatorcontrib><creatorcontrib>Luz, Sergio Luiz Bessa</creatorcontrib><creatorcontrib>Ramírez, Juan David</creatorcontrib><creatorcontrib>Herrera, Giovanny</creatorcontrib><creatorcontrib>Vasconcelos Dos Santos, Thiago</creatorcontrib><creatorcontrib>Ginouves, Marine</creatorcontrib><creatorcontrib>Demar, Magalie</creatorcontrib><creatorcontrib>Prévot, Ghislaine</creatorcontrib><creatorcontrib>Guégan, Jean-François</creatorcontrib><creatorcontrib>de Thoisy, Benoît</creatorcontrib><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</description><subject>Anthropogenic factors</subject><subject>Biodiversity</subject><subject>Biology and Life Sciences</subject><subject>Biomes</subject><subject>Communicable diseases</subject><subject>Cutaneous leishmaniasis</subject><subject>Deforestation</subject><subject>Disease transmission</subject><subject>Ecological distribution</subject><subject>Ecological effects</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecology, environment</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental aspects</subject><subject>Environmental factors</subject><subject>Environmental impact</subject><subject>Epidemiology</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>French Guiana - epidemiology</subject><subject>Geography</subject><subject>Health</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Heterogeneity</subject><subject>Human health and pathology</subject><subject>Human impact</subject><subject>Human influences</subject><subject>Human-environment relationship</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influence</subject><subject>Leishmaniasis</subject><subject>Leishmaniasis, Cutaneous - epidemiology</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Niches</subject><subject>Niches (Ecology)</subject><subject>Parasitic diseases</subject><subject>Predictions</subject><subject>Prevalence</subject><subject>Public health</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Santé publique et épidémiologie</subject><subject>Seasons</subject><subject>South America - epidemiology</subject><subject>Terrestrial ecosystems</subject><subject>Transmission</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>Vectors (Biology)</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul2LEzEUHURx19V_IDogCD60Tj6mmbwIZVndhaIv-hzy2UnNJDXJLPjvzbSzSytKHpJ7c865OTe3ql6DZgkQAR93YYyeu-XeZ7VsmoasIH1SXQKK2gUkqH16cr6oXqS0a5qWth14Xl0ggAFsILys0o0MLmyt5K72Vva6HoLSzlm_rU2I9T5qZWWewlwuo00_62BqOWbudRhT7bRN_cC95cmm2voD7KsOOYb9QXUINuVJS5dN2DDol9Uzw13Sr-b9qvrx-eb79e1i8-3L3fV6s5CrtssLsxIKU6MkMS1XHSS6JapYgFR0BkHTcEkEhooSKkRHkcSQYISQ5kYAXrxfVW-PunsXEpv7lRiEFGBCKeoK4u6IUIHv2D7agcffLHDLDokQt4zHbKXTjGtlGimE0S3GnCshCFYlpoCQBiJTtD7N1UYxaCW1z5G7M9HzG297tg33bLWiiKDpuR-OAv1ftNv1hk25UoZCAvE9KNh3c7EYfo2ls_-xN6O2vDiw3pRf4XKwSbJ1SztKOtrhglr-A1WW0oOVwWtjS_6M8P6E0Gvucp-CG7MNPp0D8REoY0gpavNoCzRsGuKHV7NpiNk8xIX25rSTj6SHqUV_APDE8Rk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chavy, Agathe</creator><creator>Ferreira Dales Nava, Alessandra</creator><creator>Luz, Sergio Luiz Bessa</creator><creator>Ramírez, Juan David</creator><creator>Herrera, Giovanny</creator><creator>Vasconcelos Dos Santos, Thiago</creator><creator>Ginouves, Marine</creator><creator>Demar, Magalie</creator><creator>Prévot, Ghislaine</creator><creator>Guégan, Jean-François</creator><creator>de Thoisy, Benoît</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1344-9312</orcidid><orcidid>https://orcid.org/0000-0002-8420-5112</orcidid><orcidid>https://orcid.org/0000-0002-7268-4953</orcidid><orcidid>https://orcid.org/0000-0002-7218-107X</orcidid><orcidid>https://orcid.org/0000-0003-3104-3209</orcidid></search><sort><creationdate>20190801</creationdate><title>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</title><author>Chavy, Agathe ; Ferreira Dales Nava, Alessandra ; Luz, Sergio Luiz Bessa ; Ramírez, Juan David ; Herrera, Giovanny ; Vasconcelos Dos Santos, Thiago ; Ginouves, Marine ; Demar, Magalie ; Prévot, Ghislaine ; Guégan, Jean-François ; de Thoisy, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-f6bd49fdc7f5ad827e57d05929b8f32f0ac7b42d979bb893c4274333eafb1a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Biodiversity</topic><topic>Biology and Life Sciences</topic><topic>Biomes</topic><topic>Communicable diseases</topic><topic>Cutaneous leishmaniasis</topic><topic>Deforestation</topic><topic>Disease transmission</topic><topic>Ecological distribution</topic><topic>Ecological effects</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecology, environment</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental aspects</topic><topic>Environmental factors</topic><topic>Environmental impact</topic><topic>Epidemiology</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>French Guiana - epidemiology</topic><topic>Geography</topic><topic>Health</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Heterogeneity</topic><topic>Human health and pathology</topic><topic>Human impact</topic><topic>Human influences</topic><topic>Human-environment relationship</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influence</topic><topic>Leishmaniasis</topic><topic>Leishmaniasis, Cutaneous - epidemiology</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Niches</topic><topic>Niches (Ecology)</topic><topic>Parasitic diseases</topic><topic>Predictions</topic><topic>Prevalence</topic><topic>Public health</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Santé publique et épidémiologie</topic><topic>Seasons</topic><topic>South America - epidemiology</topic><topic>Terrestrial ecosystems</topic><topic>Transmission</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavy, Agathe</creatorcontrib><creatorcontrib>Ferreira Dales Nava, Alessandra</creatorcontrib><creatorcontrib>Luz, Sergio Luiz Bessa</creatorcontrib><creatorcontrib>Ramírez, Juan David</creatorcontrib><creatorcontrib>Herrera, Giovanny</creatorcontrib><creatorcontrib>Vasconcelos Dos Santos, Thiago</creatorcontrib><creatorcontrib>Ginouves, Marine</creatorcontrib><creatorcontrib>Demar, Magalie</creatorcontrib><creatorcontrib>Prévot, Ghislaine</creatorcontrib><creatorcontrib>Guégan, Jean-François</creatorcontrib><creatorcontrib>de Thoisy, Benoît</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavy, Agathe</au><au>Ferreira Dales Nava, Alessandra</au><au>Luz, Sergio Luiz Bessa</au><au>Ramírez, Juan David</au><au>Herrera, Giovanny</au><au>Vasconcelos Dos Santos, Thiago</au><au>Ginouves, Marine</au><au>Demar, Magalie</au><au>Prévot, Ghislaine</au><au>Guégan, Jean-François</au><au>de Thoisy, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>8</issue><spage>e0007629</spage><pages>e0007629-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31412022</pmid><doi>10.1371/journal.pntd.0007629</doi><orcidid>https://orcid.org/0000-0002-1344-9312</orcidid><orcidid>https://orcid.org/0000-0002-8420-5112</orcidid><orcidid>https://orcid.org/0000-0002-7268-4953</orcidid><orcidid>https://orcid.org/0000-0002-7218-107X</orcidid><orcidid>https://orcid.org/0000-0003-3104-3209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2019-08, Vol.13 (8), p.e0007629 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_2291479938 |
source | Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Anthropogenic factors Biodiversity Biology and Life Sciences Biomes Communicable diseases Cutaneous leishmaniasis Deforestation Disease transmission Ecological distribution Ecological effects Ecological niches Ecology Ecology and Environmental Sciences Ecology, environment Ecosystem Ecosystems Environmental aspects Environmental factors Environmental impact Epidemiology Forest ecosystems Forests French Guiana - epidemiology Geography Health Health aspects Health risks Heterogeneity Human health and pathology Human impact Human influences Human-environment relationship Humans Infectious diseases Influence Leishmaniasis Leishmaniasis, Cutaneous - epidemiology Life Sciences Medicine and Health Sciences Modelling Niches Niches (Ecology) Parasitic diseases Predictions Prevalence Public health Risk assessment Risk factors Santé publique et épidémiologie Seasons South America - epidemiology Terrestrial ecosystems Transmission Tropical diseases Vector-borne diseases Vectors Vectors (Biology) |
title | Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20niche%20modelling%20for%20predicting%20the%20risk%20of%20cutaneous%20leishmaniasis%20in%20the%20Neotropical%20moist%20forest%20biome&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Chavy,%20Agathe&rft.date=2019-08-01&rft.volume=13&rft.issue=8&rft.spage=e0007629&rft.pages=e0007629-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0007629&rft_dat=%3Cgale_plos_%3EA598978984%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291479938&rft_id=info:pmid/31412022&rft_galeid=A598978984&rft_doaj_id=oai_doaj_org_article_aedf0cbbfe544aadbb74dcbb9177023f&rfr_iscdi=true |