Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules
The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63)...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2019-08, Vol.17 (8), p.e3000355-e3000355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3000355 |
---|---|
container_issue | 8 |
container_start_page | e3000355 |
container_title | PLoS biology |
container_volume | 17 |
creator | Gao, Guang Zhu, Chengjia Liu, Emma Nabi, Ivan R |
description | The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules. |
doi_str_mv | 10.1371/journal.pbio.3000355 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291477123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600426418</galeid><doaj_id>oai_doaj_org_article_2c1842262266435a961fa40fed167bee</doaj_id><sourcerecordid>A600426418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyBYiQscEjy21x8XpCoqECnQKnxcLWd3nLra2GG9i4Bfj0O2VYN6ANmSLfuZd_yOpyieApkCk_D6Kg5dsO10u_JxygghrKruFcdQ8Woilaru39ofFY9SuiKEUk3Vw-KIARdagTwuLpbY-3poYyhtaMrZYv7hYiJY2eF6aG2PZbAhNnFjfShjt7bB_7K9z3R05RY7v73Ezrbl2bLsh9XQYnpcPHC2TfhkXE-KL2_PPs_eTxbn7-az08WkFrrqJ4rrlRUSHZPMKQWruiYVYxSgQkkrh0o0TigNliAHq5BW4GquhdRaaQbspHi-1922MZmxGMlkh8ClBMoyMd8TTbRXZtv5je1-mmi9-XOQ3RjbZfMtGlqD4pSKPAVnldUCnOXEYQNCrhCz1psx27DaYFNj6LPtA9HDm-AvzTp-N0JyykFmgZejQBe_DZh6s_Gpxra1AeOwe7diAERrktEXf6F3uxuptc0GfHAx5613ouZUEMKp4KAyNb2DyqPBja9jQOfz-UHAq4OAzPT4o1_bISUz_7T8D_bjv7PnXw9ZvmfrLqbUobupMxCz6_3rgphd75ux93PYs9t_dBN03ezsN6vn-7c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291477123</pqid></control><display><type>article</type><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R</creator><contributor>Schmid, Sandra L.</contributor><creatorcontrib>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R ; Schmid, Sandra L.</creatorcontrib><description>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000355</identifier><identifier>PMID: 31469817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibodies ; Biology and Life Sciences ; Calnexin ; Calreticulin ; Cell adhesion & migration ; Cell Line, Tumor ; Chlorocebus aethiops ; Confocal microscopy ; COS Cells ; Cytoskeleton ; Cytoskeleton - metabolism ; Depletion ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fluorescence ; Green fluorescent protein ; Heterogeneity ; Humans ; Lipids ; Localization ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes - metabolism ; Microscopy ; Microtubules - metabolism ; Morphology ; Nogo Proteins - metabolism ; Nonlinear Optical Microscopy - methods ; Oxidation ; Physiological aspects ; Physiology ; Proteins ; Research and Analysis Methods ; Signal transduction ; Stimulated emission ; Structure ; Tubules</subject><ispartof>PLoS biology, 2019-08, Vol.17 (8), p.e3000355-e3000355</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Gao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Gao et al 2019 Gao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</citedby><cites>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</cites><orcidid>0000-0003-1362-8641 ; 0000-0002-0670-0513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742417/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742417/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31469817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schmid, Sandra L.</contributor><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Zhu, Chengjia</creatorcontrib><creatorcontrib>Liu, Emma</creatorcontrib><creatorcontrib>Nabi, Ivan R</creatorcontrib><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Calnexin</subject><subject>Calreticulin</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Chlorocebus aethiops</subject><subject>Confocal microscopy</subject><subject>COS Cells</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Depletion</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Lipids</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes - metabolism</subject><subject>Microscopy</subject><subject>Microtubules - metabolism</subject><subject>Morphology</subject><subject>Nogo Proteins - metabolism</subject><subject>Nonlinear Optical Microscopy - methods</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Stimulated emission</subject><subject>Structure</subject><subject>Tubules</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyBYiQscEjy21x8XpCoqECnQKnxcLWd3nLra2GG9i4Bfj0O2VYN6ANmSLfuZd_yOpyieApkCk_D6Kg5dsO10u_JxygghrKruFcdQ8Woilaru39ofFY9SuiKEUk3Vw-KIARdagTwuLpbY-3poYyhtaMrZYv7hYiJY2eF6aG2PZbAhNnFjfShjt7bB_7K9z3R05RY7v73Ezrbl2bLsh9XQYnpcPHC2TfhkXE-KL2_PPs_eTxbn7-az08WkFrrqJ4rrlRUSHZPMKQWruiYVYxSgQkkrh0o0TigNliAHq5BW4GquhdRaaQbspHi-1922MZmxGMlkh8ClBMoyMd8TTbRXZtv5je1-mmi9-XOQ3RjbZfMtGlqD4pSKPAVnldUCnOXEYQNCrhCz1psx27DaYFNj6LPtA9HDm-AvzTp-N0JyykFmgZejQBe_DZh6s_Gpxra1AeOwe7diAERrktEXf6F3uxuptc0GfHAx5613ouZUEMKp4KAyNb2DyqPBja9jQOfz-UHAq4OAzPT4o1_bISUz_7T8D_bjv7PnXw9ZvmfrLqbUobupMxCz6_3rgphd75ux93PYs9t_dBN03ezsN6vn-7c</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Gao, Guang</creator><creator>Zhu, Chengjia</creator><creator>Liu, Emma</creator><creator>Nabi, Ivan R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1362-8641</orcidid><orcidid>https://orcid.org/0000-0002-0670-0513</orcidid></search><sort><creationdate>20190830</creationdate><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><author>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Calnexin</topic><topic>Calreticulin</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Chlorocebus aethiops</topic><topic>Confocal microscopy</topic><topic>COS Cells</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Depletion</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Lipids</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes - metabolism</topic><topic>Microscopy</topic><topic>Microtubules - metabolism</topic><topic>Morphology</topic><topic>Nogo Proteins - metabolism</topic><topic>Nonlinear Optical Microscopy - methods</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Stimulated emission</topic><topic>Structure</topic><topic>Tubules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Zhu, Chengjia</creatorcontrib><creatorcontrib>Liu, Emma</creatorcontrib><creatorcontrib>Nabi, Ivan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Guang</au><au>Zhu, Chengjia</au><au>Liu, Emma</au><au>Nabi, Ivan R</au><au>Schmid, Sandra L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-08-30</date><risdate>2019</risdate><volume>17</volume><issue>8</issue><spage>e3000355</spage><epage>e3000355</epage><pages>e3000355-e3000355</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31469817</pmid><doi>10.1371/journal.pbio.3000355</doi><orcidid>https://orcid.org/0000-0003-1362-8641</orcidid><orcidid>https://orcid.org/0000-0002-0670-0513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2019-08, Vol.17 (8), p.e3000355-e3000355 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2291477123 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Animals Antibodies Biology and Life Sciences Calnexin Calreticulin Cell adhesion & migration Cell Line, Tumor Chlorocebus aethiops Confocal microscopy COS Cells Cytoskeleton Cytoskeleton - metabolism Depletion Endoplasmic reticulum Endoplasmic Reticulum - metabolism Fluorescence Green fluorescent protein Heterogeneity Humans Lipids Localization Membrane proteins Membrane Proteins - metabolism Membranes - metabolism Microscopy Microtubules - metabolism Morphology Nogo Proteins - metabolism Nonlinear Optical Microscopy - methods Oxidation Physiological aspects Physiology Proteins Research and Analysis Methods Signal transduction Stimulated emission Structure Tubules |
title | Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reticulon%20and%20CLIMP-63%20regulate%20nanodomain%20organization%20of%20peripheral%20ER%20tubules&rft.jtitle=PLoS%20biology&rft.au=Gao,%20Guang&rft.date=2019-08-30&rft.volume=17&rft.issue=8&rft.spage=e3000355&rft.epage=e3000355&rft.pages=e3000355-e3000355&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000355&rft_dat=%3Cgale_plos_%3EA600426418%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291477123&rft_id=info:pmid/31469817&rft_galeid=A600426418&rft_doaj_id=oai_doaj_org_article_2c1842262266435a961fa40fed167bee&rfr_iscdi=true |