Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules

The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2019-08, Vol.17 (8), p.e3000355-e3000355
Hauptverfasser: Gao, Guang, Zhu, Chengjia, Liu, Emma, Nabi, Ivan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3000355
container_issue 8
container_start_page e3000355
container_title PLoS biology
container_volume 17
creator Gao, Guang
Zhu, Chengjia
Liu, Emma
Nabi, Ivan R
description The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.
doi_str_mv 10.1371/journal.pbio.3000355
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291477123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600426418</galeid><doaj_id>oai_doaj_org_article_2c1842262266435a961fa40fed167bee</doaj_id><sourcerecordid>A600426418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyBYiQscEjy21x8XpCoqECnQKnxcLWd3nLra2GG9i4Bfj0O2VYN6ANmSLfuZd_yOpyieApkCk_D6Kg5dsO10u_JxygghrKruFcdQ8Woilaru39ofFY9SuiKEUk3Vw-KIARdagTwuLpbY-3poYyhtaMrZYv7hYiJY2eF6aG2PZbAhNnFjfShjt7bB_7K9z3R05RY7v73Ezrbl2bLsh9XQYnpcPHC2TfhkXE-KL2_PPs_eTxbn7-az08WkFrrqJ4rrlRUSHZPMKQWruiYVYxSgQkkrh0o0TigNliAHq5BW4GquhdRaaQbspHi-1922MZmxGMlkh8ClBMoyMd8TTbRXZtv5je1-mmi9-XOQ3RjbZfMtGlqD4pSKPAVnldUCnOXEYQNCrhCz1psx27DaYFNj6LPtA9HDm-AvzTp-N0JyykFmgZejQBe_DZh6s_Gpxra1AeOwe7diAERrktEXf6F3uxuptc0GfHAx5613ouZUEMKp4KAyNb2DyqPBja9jQOfz-UHAq4OAzPT4o1_bISUz_7T8D_bjv7PnXw9ZvmfrLqbUobupMxCz6_3rgphd75ux93PYs9t_dBN03ezsN6vn-7c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291477123</pqid></control><display><type>article</type><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R</creator><contributor>Schmid, Sandra L.</contributor><creatorcontrib>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R ; Schmid, Sandra L.</creatorcontrib><description>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3000355</identifier><identifier>PMID: 31469817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibodies ; Biology and Life Sciences ; Calnexin ; Calreticulin ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Chlorocebus aethiops ; Confocal microscopy ; COS Cells ; Cytoskeleton ; Cytoskeleton - metabolism ; Depletion ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fluorescence ; Green fluorescent protein ; Heterogeneity ; Humans ; Lipids ; Localization ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes - metabolism ; Microscopy ; Microtubules - metabolism ; Morphology ; Nogo Proteins - metabolism ; Nonlinear Optical Microscopy - methods ; Oxidation ; Physiological aspects ; Physiology ; Proteins ; Research and Analysis Methods ; Signal transduction ; Stimulated emission ; Structure ; Tubules</subject><ispartof>PLoS biology, 2019-08, Vol.17 (8), p.e3000355-e3000355</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Gao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Gao et al 2019 Gao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</citedby><cites>FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</cites><orcidid>0000-0003-1362-8641 ; 0000-0002-0670-0513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742417/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742417/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31469817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schmid, Sandra L.</contributor><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Zhu, Chengjia</creatorcontrib><creatorcontrib>Liu, Emma</creatorcontrib><creatorcontrib>Nabi, Ivan R</creatorcontrib><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Calnexin</subject><subject>Calreticulin</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Chlorocebus aethiops</subject><subject>Confocal microscopy</subject><subject>COS Cells</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Depletion</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Lipids</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes - metabolism</subject><subject>Microscopy</subject><subject>Microtubules - metabolism</subject><subject>Morphology</subject><subject>Nogo Proteins - metabolism</subject><subject>Nonlinear Optical Microscopy - methods</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Stimulated emission</subject><subject>Structure</subject><subject>Tubules</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyBYiQscEjy21x8XpCoqECnQKnxcLWd3nLra2GG9i4Bfj0O2VYN6ANmSLfuZd_yOpyieApkCk_D6Kg5dsO10u_JxygghrKruFcdQ8Woilaru39ofFY9SuiKEUk3Vw-KIARdagTwuLpbY-3poYyhtaMrZYv7hYiJY2eF6aG2PZbAhNnFjfShjt7bB_7K9z3R05RY7v73Ezrbl2bLsh9XQYnpcPHC2TfhkXE-KL2_PPs_eTxbn7-az08WkFrrqJ4rrlRUSHZPMKQWruiYVYxSgQkkrh0o0TigNliAHq5BW4GquhdRaaQbspHi-1922MZmxGMlkh8ClBMoyMd8TTbRXZtv5je1-mmi9-XOQ3RjbZfMtGlqD4pSKPAVnldUCnOXEYQNCrhCz1psx27DaYFNj6LPtA9HDm-AvzTp-N0JyykFmgZejQBe_DZh6s_Gpxra1AeOwe7diAERrktEXf6F3uxuptc0GfHAx5613ouZUEMKp4KAyNb2DyqPBja9jQOfz-UHAq4OAzPT4o1_bISUz_7T8D_bjv7PnXw9ZvmfrLqbUobupMxCz6_3rgphd75ux93PYs9t_dBN03ezsN6vn-7c</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Gao, Guang</creator><creator>Zhu, Chengjia</creator><creator>Liu, Emma</creator><creator>Nabi, Ivan R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1362-8641</orcidid><orcidid>https://orcid.org/0000-0002-0670-0513</orcidid></search><sort><creationdate>20190830</creationdate><title>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</title><author>Gao, Guang ; Zhu, Chengjia ; Liu, Emma ; Nabi, Ivan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-849ba67ef373f881bcc05332115e725fe86df6891a0e41a8e251fc49679989313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Calnexin</topic><topic>Calreticulin</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Chlorocebus aethiops</topic><topic>Confocal microscopy</topic><topic>COS Cells</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Depletion</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Lipids</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes - metabolism</topic><topic>Microscopy</topic><topic>Microtubules - metabolism</topic><topic>Morphology</topic><topic>Nogo Proteins - metabolism</topic><topic>Nonlinear Optical Microscopy - methods</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Stimulated emission</topic><topic>Structure</topic><topic>Tubules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Zhu, Chengjia</creatorcontrib><creatorcontrib>Liu, Emma</creatorcontrib><creatorcontrib>Nabi, Ivan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Guang</au><au>Zhu, Chengjia</au><au>Liu, Emma</au><au>Nabi, Ivan R</au><au>Schmid, Sandra L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2019-08-30</date><risdate>2019</risdate><volume>17</volume><issue>8</issue><spage>e3000355</spage><epage>e3000355</epage><pages>e3000355-e3000355</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon (RTN) and cytoskeleton-linking membrane protein 63 (CLIMP-63), respectively. Here, stimulated emission depletion (STED) super-resolution microscopy shows that reticulon4a (RTN4a) and CLIMP-63 also regulate the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ER monomeric oxidizing environment-optimized green fluorescent protein (ERmoxGFP), membrane Sec61βGFP, knock-in calreticulin-GFP, and antibody-labeled ER-resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. RTN4a segregates away from and restricts lumenal blob length, while CLIMP-63 associates with and increases lumenal blob length. RTN4a and CLIMP-63 also regulate the nanodomain distribution of ER-resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that RTN4a and CLIMP-63 regulate dynamic nanoscale lumenal compartmentalization along peripheral ER tubules. RTN4a enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER-shaping proteins RTN and CLIMP-63 therefore regulate lumenal ER nanodomain heterogeneity, interaction with ER-resident proteins, and dynamics in peripheral ER tubules.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31469817</pmid><doi>10.1371/journal.pbio.3000355</doi><orcidid>https://orcid.org/0000-0003-1362-8641</orcidid><orcidid>https://orcid.org/0000-0002-0670-0513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2019-08, Vol.17 (8), p.e3000355-e3000355
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2291477123
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Animals
Antibodies
Biology and Life Sciences
Calnexin
Calreticulin
Cell adhesion & migration
Cell Line, Tumor
Chlorocebus aethiops
Confocal microscopy
COS Cells
Cytoskeleton
Cytoskeleton - metabolism
Depletion
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fluorescence
Green fluorescent protein
Heterogeneity
Humans
Lipids
Localization
Membrane proteins
Membrane Proteins - metabolism
Membranes - metabolism
Microscopy
Microtubules - metabolism
Morphology
Nogo Proteins - metabolism
Nonlinear Optical Microscopy - methods
Oxidation
Physiological aspects
Physiology
Proteins
Research and Analysis Methods
Signal transduction
Stimulated emission
Structure
Tubules
title Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reticulon%20and%20CLIMP-63%20regulate%20nanodomain%20organization%20of%20peripheral%20ER%20tubules&rft.jtitle=PLoS%20biology&rft.au=Gao,%20Guang&rft.date=2019-08-30&rft.volume=17&rft.issue=8&rft.spage=e3000355&rft.epage=e3000355&rft.pages=e3000355-e3000355&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3000355&rft_dat=%3Cgale_plos_%3EA600426418%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291477123&rft_id=info:pmid/31469817&rft_galeid=A600426418&rft_doaj_id=oai_doaj_org_article_2c1842262266435a961fa40fed167bee&rfr_iscdi=true