Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies
Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2019-08, Vol.15 (8), p.e1008308 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e1008308 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Park, Sangeun Park, Sei-Kyoung Watanabe, Naruaki Hashimoto, Tadafumi Iwatsubo, Takeshi Shelkovnikova, Tatyana A Liebman, Susan W |
description | Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases. |
doi_str_mv | 10.1371/journal.pgen.1008308 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291476885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600424826</galeid><doaj_id>oai_doaj_org_article_715c39ae19a3469ab13eac20d342bec5</doaj_id><sourcerecordid>A600424826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</originalsourceid><addsrcrecordid>eNp1Us1u1DAYjBCIlsIbILDEBQ7Z-i9xckFaVgUqVVDBInGzHNvZepXYwXZW7KPwtjjdtOpKIB9sfZ6Zb8b-suwlggtEGDrfutFb0S2GjbYLBGFFYPUoO0VFQXJGIX384HySPQthCyEpqpo9zU4IIjUkJTzN_qxEJ83Y516HwdlgdhpEL2wQMpqdiM6Dt6tvF9_X70B0v400cQ9MAAktR61AswedCwG4Flx_uEbny_XPLxi0o01sZ4GxQADrdroDey1CBIN3URvrBhFv9qB3Kt0IqybgbdeUxUjQdkaH59mTVnRBv5j3s-zHx4v16nN-9fXT5Wp5lcuyqGNOK1W1hDRaMoJbTRmBUEmBacOIxKVqGWsoggVkVUEl1rVqKtW0FZIMiqYsyFn2-qA7pCR8ftXAMa4RZWVVTYjLA0I5seWDN73we-6E4bcF5zdc-GhkpzlDhSS10KgWhJa1aBDRQmKoCMXJ4qT1fu42Nr1WUtuUuzsSPb6x5oZv3I6XZV0zVCaBN7OAd79GHeJ_LM-ojUiujG1dEpO9CZIvSwgpphWetBb_QKWldG-ks7o1qX5EoAeC9OnXvW7vjSPIp6m8M8OnqeTzVCbaq4eh70l3Y0j-AqIU4To</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291476885</pqid></control><display><type>article</type><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W</creator><contributor>Serio, Tricia R.</contributor><creatorcontrib>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W ; Serio, Tricia R.</creatorcontrib><description>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008308</identifier><identifier>PMID: 31390360</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aggregates ; Amyloid ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Analysis ; Animals ; Animals, Genetically Modified ; Ataxin-2 - genetics ; Ataxin-2 - metabolism ; Biology and Life Sciences ; Calcium ; Candidiasis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line, Tumor ; Chemical properties ; Chromatin remodeling ; Clonal deletion ; Control ; Disease ; Disease Models, Animal ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Funding ; Gene silencing ; Genes ; Genetic aspects ; Genetic engineering ; Genetically modified organisms ; Heat-Shock Proteins - metabolism ; Homology (Biology) ; Humans ; Insects ; Localization ; Mammalian cells ; Medicine and Health Sciences ; Mice ; Mutation ; Neurodegenerative diseases ; Neurons ; Neuropathology ; Pharmacology ; Phenotypes ; Physical Sciences ; Plasmids ; Prion protein ; Prions ; Prions - metabolism ; Proteins ; Research and Analysis Methods ; Retina ; Retinal ganglion cells ; Retinal Ganglion Cells - pathology ; Risk factors ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Supervision ; Therapeutic applications ; Toxicity ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcriptional coactivators ; Yeast</subject><ispartof>PLoS genetics, 2019-08, Vol.15 (8), p.e1008308</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Park et al 2019 Park et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</citedby><cites>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</cites><orcidid>0000-0002-7020-0222 ; 0000-0003-1367-5309 ; 0000-0003-3898-6197 ; 0000-0002-5845-4633 ; 0000-0003-1160-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31390360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Serio, Tricia R.</contributor><creatorcontrib>Park, Sangeun</creatorcontrib><creatorcontrib>Park, Sei-Kyoung</creatorcontrib><creatorcontrib>Watanabe, Naruaki</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana A</creatorcontrib><creatorcontrib>Liebman, Susan W</creatorcontrib><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</description><subject>Aggregates</subject><subject>Amyloid</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Analysis</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Ataxin-2 - genetics</subject><subject>Ataxin-2 - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Calcium</subject><subject>Candidiasis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chemical properties</subject><subject>Chromatin remodeling</subject><subject>Clonal deletion</subject><subject>Control</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Funding</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetically modified organisms</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Homology (Biology)</subject><subject>Humans</subject><subject>Insects</subject><subject>Localization</subject><subject>Mammalian cells</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neuropathology</subject><subject>Pharmacology</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Prions - metabolism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Retina</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Risk factors</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Supervision</subject><subject>Therapeutic applications</subject><subject>Toxicity</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcriptional coactivators</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Us1u1DAYjBCIlsIbILDEBQ7Z-i9xckFaVgUqVVDBInGzHNvZepXYwXZW7KPwtjjdtOpKIB9sfZ6Zb8b-suwlggtEGDrfutFb0S2GjbYLBGFFYPUoO0VFQXJGIX384HySPQthCyEpqpo9zU4IIjUkJTzN_qxEJ83Y516HwdlgdhpEL2wQMpqdiM6Dt6tvF9_X70B0v400cQ9MAAktR61AswedCwG4Flx_uEbny_XPLxi0o01sZ4GxQADrdroDey1CBIN3URvrBhFv9qB3Kt0IqybgbdeUxUjQdkaH59mTVnRBv5j3s-zHx4v16nN-9fXT5Wp5lcuyqGNOK1W1hDRaMoJbTRmBUEmBacOIxKVqGWsoggVkVUEl1rVqKtW0FZIMiqYsyFn2-qA7pCR8ftXAMa4RZWVVTYjLA0I5seWDN73we-6E4bcF5zdc-GhkpzlDhSS10KgWhJa1aBDRQmKoCMXJ4qT1fu42Nr1WUtuUuzsSPb6x5oZv3I6XZV0zVCaBN7OAd79GHeJ_LM-ojUiujG1dEpO9CZIvSwgpphWetBb_QKWldG-ks7o1qX5EoAeC9OnXvW7vjSPIp6m8M8OnqeTzVCbaq4eh70l3Y0j-AqIU4To</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Park, Sangeun</creator><creator>Park, Sei-Kyoung</creator><creator>Watanabe, Naruaki</creator><creator>Hashimoto, Tadafumi</creator><creator>Iwatsubo, Takeshi</creator><creator>Shelkovnikova, Tatyana A</creator><creator>Liebman, Susan W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7020-0222</orcidid><orcidid>https://orcid.org/0000-0003-1367-5309</orcidid><orcidid>https://orcid.org/0000-0003-3898-6197</orcidid><orcidid>https://orcid.org/0000-0002-5845-4633</orcidid><orcidid>https://orcid.org/0000-0003-1160-8129</orcidid></search><sort><creationdate>20190801</creationdate><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><author>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Amyloid</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Analysis</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Ataxin-2 - genetics</topic><topic>Ataxin-2 - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Calcium</topic><topic>Candidiasis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chemical properties</topic><topic>Chromatin remodeling</topic><topic>Clonal deletion</topic><topic>Control</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Funding</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetically modified organisms</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Homology (Biology)</topic><topic>Humans</topic><topic>Insects</topic><topic>Localization</topic><topic>Mammalian cells</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neuropathology</topic><topic>Pharmacology</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Prions - metabolism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Retina</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Risk factors</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Supervision</topic><topic>Therapeutic applications</topic><topic>Toxicity</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcriptional coactivators</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sangeun</creatorcontrib><creatorcontrib>Park, Sei-Kyoung</creatorcontrib><creatorcontrib>Watanabe, Naruaki</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana A</creatorcontrib><creatorcontrib>Liebman, Susan W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sangeun</au><au>Park, Sei-Kyoung</au><au>Watanabe, Naruaki</au><au>Hashimoto, Tadafumi</au><au>Iwatsubo, Takeshi</au><au>Shelkovnikova, Tatyana A</au><au>Liebman, Susan W</au><au>Serio, Tricia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>15</volume><issue>8</issue><spage>e1008308</spage><pages>e1008308-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31390360</pmid><doi>10.1371/journal.pgen.1008308</doi><orcidid>https://orcid.org/0000-0002-7020-0222</orcidid><orcidid>https://orcid.org/0000-0003-1367-5309</orcidid><orcidid>https://orcid.org/0000-0003-3898-6197</orcidid><orcidid>https://orcid.org/0000-0002-5845-4633</orcidid><orcidid>https://orcid.org/0000-0003-1160-8129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-08, Vol.15 (8), p.e1008308 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2291476885 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Aggregates Amyloid Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Analysis Animals Animals, Genetically Modified Ataxin-2 - genetics Ataxin-2 - metabolism Biology and Life Sciences Calcium Candidiasis Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line, Tumor Chemical properties Chromatin remodeling Clonal deletion Control Disease Disease Models, Animal Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Funding Gene silencing Genes Genetic aspects Genetic engineering Genetically modified organisms Heat-Shock Proteins - metabolism Homology (Biology) Humans Insects Localization Mammalian cells Medicine and Health Sciences Mice Mutation Neurodegenerative diseases Neurons Neuropathology Pharmacology Phenotypes Physical Sciences Plasmids Prion protein Prions Prions - metabolism Proteins Research and Analysis Methods Retina Retinal ganglion cells Retinal Ganglion Cells - pathology Risk factors Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Supervision Therapeutic applications Toxicity Trans-Activators - genetics Trans-Activators - metabolism Transcriptional coactivators Yeast |
title | Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium-responsive%20transactivator%20(CREST)%20toxicity%20is%20rescued%20by%20loss%20of%20PBP1/ATXN2%20function%20in%20a%20novel%20yeast%20proteinopathy%20model%20and%20in%20transgenic%20flies&rft.jtitle=PLoS%20genetics&rft.au=Park,%20Sangeun&rft.date=2019-08-01&rft.volume=15&rft.issue=8&rft.spage=e1008308&rft.pages=e1008308-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008308&rft_dat=%3Cgale_plos_%3EA600424826%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291476885&rft_id=info:pmid/31390360&rft_galeid=A600424826&rft_doaj_id=oai_doaj_org_article_715c39ae19a3469ab13eac20d342bec5&rfr_iscdi=true |