Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies

Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2019-08, Vol.15 (8), p.e1008308
Hauptverfasser: Park, Sangeun, Park, Sei-Kyoung, Watanabe, Naruaki, Hashimoto, Tadafumi, Iwatsubo, Takeshi, Shelkovnikova, Tatyana A, Liebman, Susan W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e1008308
container_title PLoS genetics
container_volume 15
creator Park, Sangeun
Park, Sei-Kyoung
Watanabe, Naruaki
Hashimoto, Tadafumi
Iwatsubo, Takeshi
Shelkovnikova, Tatyana A
Liebman, Susan W
description Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.
doi_str_mv 10.1371/journal.pgen.1008308
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2291476885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600424826</galeid><doaj_id>oai_doaj_org_article_715c39ae19a3469ab13eac20d342bec5</doaj_id><sourcerecordid>A600424826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</originalsourceid><addsrcrecordid>eNp1Us1u1DAYjBCIlsIbILDEBQ7Z-i9xckFaVgUqVVDBInGzHNvZepXYwXZW7KPwtjjdtOpKIB9sfZ6Zb8b-suwlggtEGDrfutFb0S2GjbYLBGFFYPUoO0VFQXJGIX384HySPQthCyEpqpo9zU4IIjUkJTzN_qxEJ83Y516HwdlgdhpEL2wQMpqdiM6Dt6tvF9_X70B0v400cQ9MAAktR61AswedCwG4Flx_uEbny_XPLxi0o01sZ4GxQADrdroDey1CBIN3URvrBhFv9qB3Kt0IqybgbdeUxUjQdkaH59mTVnRBv5j3s-zHx4v16nN-9fXT5Wp5lcuyqGNOK1W1hDRaMoJbTRmBUEmBacOIxKVqGWsoggVkVUEl1rVqKtW0FZIMiqYsyFn2-qA7pCR8ftXAMa4RZWVVTYjLA0I5seWDN73we-6E4bcF5zdc-GhkpzlDhSS10KgWhJa1aBDRQmKoCMXJ4qT1fu42Nr1WUtuUuzsSPb6x5oZv3I6XZV0zVCaBN7OAd79GHeJ_LM-ojUiujG1dEpO9CZIvSwgpphWetBb_QKWldG-ks7o1qX5EoAeC9OnXvW7vjSPIp6m8M8OnqeTzVCbaq4eh70l3Y0j-AqIU4To</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291476885</pqid></control><display><type>article</type><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W</creator><contributor>Serio, Tricia R.</contributor><creatorcontrib>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W ; Serio, Tricia R.</creatorcontrib><description>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008308</identifier><identifier>PMID: 31390360</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aggregates ; Amyloid ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Analysis ; Animals ; Animals, Genetically Modified ; Ataxin-2 - genetics ; Ataxin-2 - metabolism ; Biology and Life Sciences ; Calcium ; Candidiasis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line, Tumor ; Chemical properties ; Chromatin remodeling ; Clonal deletion ; Control ; Disease ; Disease Models, Animal ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Funding ; Gene silencing ; Genes ; Genetic aspects ; Genetic engineering ; Genetically modified organisms ; Heat-Shock Proteins - metabolism ; Homology (Biology) ; Humans ; Insects ; Localization ; Mammalian cells ; Medicine and Health Sciences ; Mice ; Mutation ; Neurodegenerative diseases ; Neurons ; Neuropathology ; Pharmacology ; Phenotypes ; Physical Sciences ; Plasmids ; Prion protein ; Prions ; Prions - metabolism ; Proteins ; Research and Analysis Methods ; Retina ; Retinal ganglion cells ; Retinal Ganglion Cells - pathology ; Risk factors ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Supervision ; Therapeutic applications ; Toxicity ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcriptional coactivators ; Yeast</subject><ispartof>PLoS genetics, 2019-08, Vol.15 (8), p.e1008308</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Park et al 2019 Park et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</citedby><cites>FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</cites><orcidid>0000-0002-7020-0222 ; 0000-0003-1367-5309 ; 0000-0003-3898-6197 ; 0000-0002-5845-4633 ; 0000-0003-1160-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699716/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31390360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Serio, Tricia R.</contributor><creatorcontrib>Park, Sangeun</creatorcontrib><creatorcontrib>Park, Sei-Kyoung</creatorcontrib><creatorcontrib>Watanabe, Naruaki</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana A</creatorcontrib><creatorcontrib>Liebman, Susan W</creatorcontrib><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</description><subject>Aggregates</subject><subject>Amyloid</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Analysis</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Ataxin-2 - genetics</subject><subject>Ataxin-2 - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Calcium</subject><subject>Candidiasis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chemical properties</subject><subject>Chromatin remodeling</subject><subject>Clonal deletion</subject><subject>Control</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Funding</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetically modified organisms</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Homology (Biology)</subject><subject>Humans</subject><subject>Insects</subject><subject>Localization</subject><subject>Mammalian cells</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neuropathology</subject><subject>Pharmacology</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Prions - metabolism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Retina</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Risk factors</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Supervision</subject><subject>Therapeutic applications</subject><subject>Toxicity</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcriptional coactivators</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Us1u1DAYjBCIlsIbILDEBQ7Z-i9xckFaVgUqVVDBInGzHNvZepXYwXZW7KPwtjjdtOpKIB9sfZ6Zb8b-suwlggtEGDrfutFb0S2GjbYLBGFFYPUoO0VFQXJGIX384HySPQthCyEpqpo9zU4IIjUkJTzN_qxEJ83Y516HwdlgdhpEL2wQMpqdiM6Dt6tvF9_X70B0v400cQ9MAAktR61AswedCwG4Flx_uEbny_XPLxi0o01sZ4GxQADrdroDey1CBIN3URvrBhFv9qB3Kt0IqybgbdeUxUjQdkaH59mTVnRBv5j3s-zHx4v16nN-9fXT5Wp5lcuyqGNOK1W1hDRaMoJbTRmBUEmBacOIxKVqGWsoggVkVUEl1rVqKtW0FZIMiqYsyFn2-qA7pCR8ftXAMa4RZWVVTYjLA0I5seWDN73we-6E4bcF5zdc-GhkpzlDhSS10KgWhJa1aBDRQmKoCMXJ4qT1fu42Nr1WUtuUuzsSPb6x5oZv3I6XZV0zVCaBN7OAd79GHeJ_LM-ojUiujG1dEpO9CZIvSwgpphWetBb_QKWldG-ks7o1qX5EoAeC9OnXvW7vjSPIp6m8M8OnqeTzVCbaq4eh70l3Y0j-AqIU4To</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Park, Sangeun</creator><creator>Park, Sei-Kyoung</creator><creator>Watanabe, Naruaki</creator><creator>Hashimoto, Tadafumi</creator><creator>Iwatsubo, Takeshi</creator><creator>Shelkovnikova, Tatyana A</creator><creator>Liebman, Susan W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7020-0222</orcidid><orcidid>https://orcid.org/0000-0003-1367-5309</orcidid><orcidid>https://orcid.org/0000-0003-3898-6197</orcidid><orcidid>https://orcid.org/0000-0002-5845-4633</orcidid><orcidid>https://orcid.org/0000-0003-1160-8129</orcidid></search><sort><creationdate>20190801</creationdate><title>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</title><author>Park, Sangeun ; Park, Sei-Kyoung ; Watanabe, Naruaki ; Hashimoto, Tadafumi ; Iwatsubo, Takeshi ; Shelkovnikova, Tatyana A ; Liebman, Susan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-48d8f33bec732fe47300dca24b73c26df77b410507854c2e9db8dbf81c70ab653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Amyloid</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Analysis</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Ataxin-2 - genetics</topic><topic>Ataxin-2 - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Calcium</topic><topic>Candidiasis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chemical properties</topic><topic>Chromatin remodeling</topic><topic>Clonal deletion</topic><topic>Control</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Funding</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetically modified organisms</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Homology (Biology)</topic><topic>Humans</topic><topic>Insects</topic><topic>Localization</topic><topic>Mammalian cells</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neuropathology</topic><topic>Pharmacology</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Prions - metabolism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Retina</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Risk factors</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Supervision</topic><topic>Therapeutic applications</topic><topic>Toxicity</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcriptional coactivators</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sangeun</creatorcontrib><creatorcontrib>Park, Sei-Kyoung</creatorcontrib><creatorcontrib>Watanabe, Naruaki</creatorcontrib><creatorcontrib>Hashimoto, Tadafumi</creatorcontrib><creatorcontrib>Iwatsubo, Takeshi</creatorcontrib><creatorcontrib>Shelkovnikova, Tatyana A</creatorcontrib><creatorcontrib>Liebman, Susan W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sangeun</au><au>Park, Sei-Kyoung</au><au>Watanabe, Naruaki</au><au>Hashimoto, Tadafumi</au><au>Iwatsubo, Takeshi</au><au>Shelkovnikova, Tatyana A</au><au>Liebman, Susan W</au><au>Serio, Tricia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>15</volume><issue>8</issue><spage>e1008308</spage><pages>e1008308-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31390360</pmid><doi>10.1371/journal.pgen.1008308</doi><orcidid>https://orcid.org/0000-0002-7020-0222</orcidid><orcidid>https://orcid.org/0000-0003-1367-5309</orcidid><orcidid>https://orcid.org/0000-0003-3898-6197</orcidid><orcidid>https://orcid.org/0000-0002-5845-4633</orcidid><orcidid>https://orcid.org/0000-0003-1160-8129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2019-08, Vol.15 (8), p.e1008308
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2291476885
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Aggregates
Amyloid
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - pathology
Analysis
Animals
Animals, Genetically Modified
Ataxin-2 - genetics
Ataxin-2 - metabolism
Biology and Life Sciences
Calcium
Candidiasis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line, Tumor
Chemical properties
Chromatin remodeling
Clonal deletion
Control
Disease
Disease Models, Animal
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Funding
Gene silencing
Genes
Genetic aspects
Genetic engineering
Genetically modified organisms
Heat-Shock Proteins - metabolism
Homology (Biology)
Humans
Insects
Localization
Mammalian cells
Medicine and Health Sciences
Mice
Mutation
Neurodegenerative diseases
Neurons
Neuropathology
Pharmacology
Phenotypes
Physical Sciences
Plasmids
Prion protein
Prions
Prions - metabolism
Proteins
Research and Analysis Methods
Retina
Retinal ganglion cells
Retinal Ganglion Cells - pathology
Risk factors
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Supervision
Therapeutic applications
Toxicity
Trans-Activators - genetics
Trans-Activators - metabolism
Transcriptional coactivators
Yeast
title Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium-responsive%20transactivator%20(CREST)%20toxicity%20is%20rescued%20by%20loss%20of%20PBP1/ATXN2%20function%20in%20a%20novel%20yeast%20proteinopathy%20model%20and%20in%20transgenic%20flies&rft.jtitle=PLoS%20genetics&rft.au=Park,%20Sangeun&rft.date=2019-08-01&rft.volume=15&rft.issue=8&rft.spage=e1008308&rft.pages=e1008308-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008308&rft_dat=%3Cgale_plos_%3EA600424826%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291476885&rft_id=info:pmid/31390360&rft_galeid=A600424826&rft_doaj_id=oai_doaj_org_article_715c39ae19a3469ab13eac20d342bec5&rfr_iscdi=true