Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow

Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-09, Vol.14 (9), p.e0222365
Hauptverfasser: Chen, Quanchao, Wen, Di, Li, Xuqiang, Chen, Dingjun, Lv, Hongxia, Zhang, Jie, Gao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0222365
container_title PloS one
container_volume 14
creator Chen, Quanchao
Wen, Di
Li, Xuqiang
Chen, Dingjun
Lv, Hongxia
Zhang, Jie
Gao, Peng
description Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have recently achieved remarkable recent in the field of natural language processing (NLP) because they are well suited for learning from experience to predict time series. For this purpose, we propose an empirical mode decomposition (EMD)-based long short-term memory (LSTM) neural network model for predicting short-term metro inbound passenger flow. The EMD algorithm decomposes the original sequential passenger flow into several intrinsic mode functions (IMFs) and a residual. Selected IMFs that are strongly correlated with the original data can be obtained via feature selection. The selected IMFs and the original data are integrated into inputs for LSTM neural networks, and a single LSTM prediction model and an EMD-LSTM hybrid forecasting model are developed. Finally, historical real automatic fare collection (AFC) data from metro passengers are collected from Chengdu Metro to verify the validity of the proposed EMD-LSTM prediction model. The results indicate that the proposed EMD-LSTM hybrid forecasting model outperforms the LSTM, ARIMA and BPN models.
doi_str_mv 10.1371/journal.pone.0222365
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2289035358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A599140422</galeid><doaj_id>oai_doaj_org_article_b487a0c553534f6da49d66f04a24cff1</doaj_id><sourcerecordid>A599140422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ccdb3ebdda649d4a2e2c8ee3a0ef6b7e85ac59d95a88936dc459b9e8e62db5b03</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEou3CP0AQCQnBYRcnjr3xBamqCqxUqRJfV8uxJ1kvTpzaDm2v_HIcNq02qAfkQ6zJ874ej2eS5EWGVhleZ-93dnCdMKvedrBCeZ5jSh4lxxnD-ZLmCD8-2B8lJ97vECK4pPRpcoQzghhh7Dj5fd722mkpTNpaBakCadveeh207dJKeFCpsV2T-q11YRnAtWkLrXW3aQeDi7IOwrV1P9PaOpDCBx3h0cqMkTRsYS4Nzqa98B66BlxaG3v9LHlSC-Ph-fRdJN8_nn87-7y8uPy0OTu9WErK8rCUUlUYKqUELZgqRA65LAGwQFDTag0lEZIwxYgoS4apkgVhFYMSaK4qUiG8SF7tfXtjPZ_K53melwxhgkkZic2eUFbseO90K9wtt0LzvwHrGi5c0NIAr4pyLZAkUYeLmioRc6K0RjGvQtZ1Fr0-TKcNVQtKQhditWam8z-d3vLG_uJ0jUsWX26RvJ0MnL0awAfeai_BGNGBHfZ5k3WxR1__gz58u4lqRLyA7mobz5WjKT-NvZAVqIhNtEhWD1BxKWi1jL1W6xifCd7NBJEJcBMaMXjPN1-__D97-WPOvjlgtyBM2HprhrEx_Rws9qB01nsH9X2RM8THUbmrBh9HhU-jEmUvDx_oXnQ3G_gP3hUSbA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289035358</pqid></control><display><type>article</type><title>Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Quanchao ; Wen, Di ; Li, Xuqiang ; Chen, Dingjun ; Lv, Hongxia ; Zhang, Jie ; Gao, Peng</creator><contributor>Chen, Feng</contributor><creatorcontrib>Chen, Quanchao ; Wen, Di ; Li, Xuqiang ; Chen, Dingjun ; Lv, Hongxia ; Zhang, Jie ; Gao, Peng ; Chen, Feng</creatorcontrib><description>Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have recently achieved remarkable recent in the field of natural language processing (NLP) because they are well suited for learning from experience to predict time series. For this purpose, we propose an empirical mode decomposition (EMD)-based long short-term memory (LSTM) neural network model for predicting short-term metro inbound passenger flow. The EMD algorithm decomposes the original sequential passenger flow into several intrinsic mode functions (IMFs) and a residual. Selected IMFs that are strongly correlated with the original data can be obtained via feature selection. The selected IMFs and the original data are integrated into inputs for LSTM neural networks, and a single LSTM prediction model and an EMD-LSTM hybrid forecasting model are developed. Finally, historical real automatic fare collection (AFC) data from metro passengers are collected from Chengdu Metro to verify the validity of the proposed EMD-LSTM prediction model. The results indicate that the proposed EMD-LSTM hybrid forecasting model outperforms the LSTM, ARIMA and BPN models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0222365</identifier><identifier>PMID: 31509599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Airports ; Algorithms ; Artificial neural networks ; Automatic fare collection ; Autoregressive models ; Biology and Life Sciences ; Computer and Information Sciences ; Decomposition ; Deep learning ; Early warning systems ; Engineering ; Engineering and Technology ; Forecasting ; Forecasting - methods ; Intelligent transportation systems ; International conferences ; Laboratories ; Long short-term memory ; Models, Statistical ; Natural language processing ; Neural networks ; Neural Networks, Computer ; Optimization algorithms ; Passengers ; Physical Sciences ; Prediction models ; Railroads - statistics &amp; numerical data ; Research and Analysis Methods ; Researchers ; Spacetime ; Subways ; Theory ; Time series ; Traffic accidents &amp; safety ; Traffic congestion ; Traffic flow</subject><ispartof>PloS one, 2019-09, Vol.14 (9), p.e0222365</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Chen et al 2019 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ccdb3ebdda649d4a2e2c8ee3a0ef6b7e85ac59d95a88936dc459b9e8e62db5b03</citedby><cites>FETCH-LOGICAL-c692t-ccdb3ebdda649d4a2e2c8ee3a0ef6b7e85ac59d95a88936dc459b9e8e62db5b03</cites><orcidid>0000-0003-3216-1493 ; 0000-0001-7484-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31509599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Feng</contributor><creatorcontrib>Chen, Quanchao</creatorcontrib><creatorcontrib>Wen, Di</creatorcontrib><creatorcontrib>Li, Xuqiang</creatorcontrib><creatorcontrib>Chen, Dingjun</creatorcontrib><creatorcontrib>Lv, Hongxia</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><title>Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have recently achieved remarkable recent in the field of natural language processing (NLP) because they are well suited for learning from experience to predict time series. For this purpose, we propose an empirical mode decomposition (EMD)-based long short-term memory (LSTM) neural network model for predicting short-term metro inbound passenger flow. The EMD algorithm decomposes the original sequential passenger flow into several intrinsic mode functions (IMFs) and a residual. Selected IMFs that are strongly correlated with the original data can be obtained via feature selection. The selected IMFs and the original data are integrated into inputs for LSTM neural networks, and a single LSTM prediction model and an EMD-LSTM hybrid forecasting model are developed. Finally, historical real automatic fare collection (AFC) data from metro passengers are collected from Chengdu Metro to verify the validity of the proposed EMD-LSTM prediction model. The results indicate that the proposed EMD-LSTM hybrid forecasting model outperforms the LSTM, ARIMA and BPN models.</description><subject>Airports</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automatic fare collection</subject><subject>Autoregressive models</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Early warning systems</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Forecasting</subject><subject>Forecasting - methods</subject><subject>Intelligent transportation systems</subject><subject>International conferences</subject><subject>Laboratories</subject><subject>Long short-term memory</subject><subject>Models, Statistical</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization algorithms</subject><subject>Passengers</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Railroads - statistics &amp; numerical data</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Spacetime</subject><subject>Subways</subject><subject>Theory</subject><subject>Time series</subject><subject>Traffic accidents &amp; safety</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEou3CP0AQCQnBYRcnjr3xBamqCqxUqRJfV8uxJ1kvTpzaDm2v_HIcNq02qAfkQ6zJ874ej2eS5EWGVhleZ-93dnCdMKvedrBCeZ5jSh4lxxnD-ZLmCD8-2B8lJ97vECK4pPRpcoQzghhh7Dj5fd722mkpTNpaBakCadveeh207dJKeFCpsV2T-q11YRnAtWkLrXW3aQeDi7IOwrV1P9PaOpDCBx3h0cqMkTRsYS4Nzqa98B66BlxaG3v9LHlSC-Ph-fRdJN8_nn87-7y8uPy0OTu9WErK8rCUUlUYKqUELZgqRA65LAGwQFDTag0lEZIwxYgoS4apkgVhFYMSaK4qUiG8SF7tfXtjPZ_K53melwxhgkkZic2eUFbseO90K9wtt0LzvwHrGi5c0NIAr4pyLZAkUYeLmioRc6K0RjGvQtZ1Fr0-TKcNVQtKQhditWam8z-d3vLG_uJ0jUsWX26RvJ0MnL0awAfeai_BGNGBHfZ5k3WxR1__gz58u4lqRLyA7mobz5WjKT-NvZAVqIhNtEhWD1BxKWi1jL1W6xifCd7NBJEJcBMaMXjPN1-__D97-WPOvjlgtyBM2HprhrEx_Rws9qB01nsH9X2RM8THUbmrBh9HhU-jEmUvDx_oXnQ3G_gP3hUSbA</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Chen, Quanchao</creator><creator>Wen, Di</creator><creator>Li, Xuqiang</creator><creator>Chen, Dingjun</creator><creator>Lv, Hongxia</creator><creator>Zhang, Jie</creator><creator>Gao, Peng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3216-1493</orcidid><orcidid>https://orcid.org/0000-0001-7484-495X</orcidid></search><sort><creationdate>20190911</creationdate><title>Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow</title><author>Chen, Quanchao ; Wen, Di ; Li, Xuqiang ; Chen, Dingjun ; Lv, Hongxia ; Zhang, Jie ; Gao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ccdb3ebdda649d4a2e2c8ee3a0ef6b7e85ac59d95a88936dc459b9e8e62db5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Airports</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automatic fare collection</topic><topic>Autoregressive models</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Early warning systems</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Forecasting</topic><topic>Forecasting - methods</topic><topic>Intelligent transportation systems</topic><topic>International conferences</topic><topic>Laboratories</topic><topic>Long short-term memory</topic><topic>Models, Statistical</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization algorithms</topic><topic>Passengers</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Railroads - statistics &amp; numerical data</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Spacetime</topic><topic>Subways</topic><topic>Theory</topic><topic>Time series</topic><topic>Traffic accidents &amp; safety</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Quanchao</creatorcontrib><creatorcontrib>Wen, Di</creatorcontrib><creatorcontrib>Li, Xuqiang</creatorcontrib><creatorcontrib>Chen, Dingjun</creatorcontrib><creatorcontrib>Lv, Hongxia</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Quanchao</au><au>Wen, Di</au><au>Li, Xuqiang</au><au>Chen, Dingjun</au><au>Lv, Hongxia</au><au>Zhang, Jie</au><au>Gao, Peng</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>14</volume><issue>9</issue><spage>e0222365</spage><pages>e0222365-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have recently achieved remarkable recent in the field of natural language processing (NLP) because they are well suited for learning from experience to predict time series. For this purpose, we propose an empirical mode decomposition (EMD)-based long short-term memory (LSTM) neural network model for predicting short-term metro inbound passenger flow. The EMD algorithm decomposes the original sequential passenger flow into several intrinsic mode functions (IMFs) and a residual. Selected IMFs that are strongly correlated with the original data can be obtained via feature selection. The selected IMFs and the original data are integrated into inputs for LSTM neural networks, and a single LSTM prediction model and an EMD-LSTM hybrid forecasting model are developed. Finally, historical real automatic fare collection (AFC) data from metro passengers are collected from Chengdu Metro to verify the validity of the proposed EMD-LSTM prediction model. The results indicate that the proposed EMD-LSTM hybrid forecasting model outperforms the LSTM, ARIMA and BPN models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31509599</pmid><doi>10.1371/journal.pone.0222365</doi><tpages>e0222365</tpages><orcidid>https://orcid.org/0000-0003-3216-1493</orcidid><orcidid>https://orcid.org/0000-0001-7484-495X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-09, Vol.14 (9), p.e0222365
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2289035358
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Airports
Algorithms
Artificial neural networks
Automatic fare collection
Autoregressive models
Biology and Life Sciences
Computer and Information Sciences
Decomposition
Deep learning
Early warning systems
Engineering
Engineering and Technology
Forecasting
Forecasting - methods
Intelligent transportation systems
International conferences
Laboratories
Long short-term memory
Models, Statistical
Natural language processing
Neural networks
Neural Networks, Computer
Optimization algorithms
Passengers
Physical Sciences
Prediction models
Railroads - statistics & numerical data
Research and Analysis Methods
Researchers
Spacetime
Subways
Theory
Time series
Traffic accidents & safety
Traffic congestion
Traffic flow
title Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20mode%20decomposition%20based%20long%20short-term%20memory%20neural%20network%20forecasting%20model%20for%20the%20short-term%20metro%20passenger%20flow&rft.jtitle=PloS%20one&rft.au=Chen,%20Quanchao&rft.date=2019-09-11&rft.volume=14&rft.issue=9&rft.spage=e0222365&rft.pages=e0222365-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0222365&rft_dat=%3Cgale_plos_%3EA599140422%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289035358&rft_id=info:pmid/31509599&rft_galeid=A599140422&rft_doaj_id=oai_doaj_org_article_b487a0c553534f6da49d66f04a24cff1&rfr_iscdi=true