When drug treatments bias genetic studies: Mediation and interaction

Increasingly, genetic analyses are conducted using information from subjects with established disease, who often receive concomitant treatment. We determined when treatment may bias genetic associations with a quantitative trait. Graph theory and simulated data were used to explore the impact of dru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-08, Vol.14 (8), p.e0221209-e0221209
Hauptverfasser: Schmidt, Amand F, Heerspink, Hiddo J L, Denig, Petra, Finan, Chris, Groenwold, Rolf H H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0221209
container_issue 8
container_start_page e0221209
container_title PloS one
container_volume 14
creator Schmidt, Amand F
Heerspink, Hiddo J L
Denig, Petra
Finan, Chris
Groenwold, Rolf H H
description Increasingly, genetic analyses are conducted using information from subjects with established disease, who often receive concomitant treatment. We determined when treatment may bias genetic associations with a quantitative trait. Graph theory and simulated data were used to explore the impact of drug prescriptions on (longitudinal) genetic effect estimates. Analytic derivations of longitudinal genetic effects are presented, accounting for the following scenarios: 1) treatment allocated independently of a genetic variant, 2) treatment that mediates the genetic effect, 3) treatment that modifies the genetic effect. We additionally evaluate treatment modelling strategies on bias, the root mean squared error (RMSE), coverage, and rejection rate. We show that in the absence of treatment by gene effect modification or mediation, genetic effect estimates will be unbiased. In simulated data we found that conditional models accounting for treatment, confounding, and effect modification were generally unbiased with appropriate levels of confidence interval coverage. Ignoring the longitudinal nature of treatment prescription, however (e.g. because of incomplete records in longitudinal data), biased these conditional models to a similar degree (or worse) as simply ignoring treatment. The mere presence of (drug) treatment affecting a GWAS phenotype is insufficient to bias genetic associations with quantitative traits. While treatment may bias associations through effect modification and mediation, this might not occur frequently enough to warrant general concern at the presence of treated subjects in GWAS. Should treatment by gene effect modification or mediation be present however, current GWAS approaches attempting to adjust for treatment insufficiently account for the multivariable and longitudinal nature of treatment trajectories and hence genetic estimates may still be biased.
doi_str_mv 10.1371/journal.pone.0221209
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2281967864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597678532</galeid><doaj_id>oai_doaj_org_article_4730252a4f884bfcae66a5bb69c55e9d</doaj_id><sourcerecordid>A597678532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-26368f6655bef8aae9d92d1b25393c816cadb2e8eec16d3b1182e5f65bfa26fc3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjE3SpK0XwrJ-Daws-HkZTpPTTpZOMiap6L83s9NdprIXkkC-nvMm5-TNssekWBJWkVeXbvQWhuXWWVwWlBJaNHeyY9IwuhC0YHcP5kfZgxAui4KzWoj72REjpUidHWdvf6zR5tqPfR49QtygjSFvDYS8R4vRqDzEURsMr_NPqA1E42wOVufGRvSgduuH2b0OhoCPpvEk-_b-3dezj4vziw-rs9PzhRINjQsqmKg7IThvsasBsNEN1aSlnDVM1UQo0C3FGlERoVlLSE2Rd4K3HVDRKXaSPd3rbgcX5FSAICmtSSOqWpSJWO0J7eBSbr3ZgP8jHRh5teF8L8GnpAaUZcUKyimUXV2XbacAhQDetqJRnKenJa03021ju0GtUmU8DDPR-Yk1a9m7X1JUhLG6SgIvJgHvfo4YotyYoHAYwKIbr95NS05F1ST02T_o7dlNVA8pAWM7l-5VO1F5ypsqQZzRRC1voVLTuDEquaUzaX8W8HIWkJiIv2MPYwhy9eXz_7MX3-fs8wN2jTDEdXDDuLNMmIPlHlTeheCxuykyKeTO7NfVkDuzy8nsKezJ4QfdBF27m_0FXfv52w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281967864</pqid></control><display><type>article</type><title>When drug treatments bias genetic studies: Mediation and interaction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmidt, Amand F ; Heerspink, Hiddo J L ; Denig, Petra ; Finan, Chris ; Groenwold, Rolf H H</creator><contributor>Luque-Fernandez, Miguel Angel</contributor><creatorcontrib>Schmidt, Amand F ; Heerspink, Hiddo J L ; Denig, Petra ; Finan, Chris ; Groenwold, Rolf H H ; Luque-Fernandez, Miguel Angel</creatorcontrib><description>Increasingly, genetic analyses are conducted using information from subjects with established disease, who often receive concomitant treatment. We determined when treatment may bias genetic associations with a quantitative trait. Graph theory and simulated data were used to explore the impact of drug prescriptions on (longitudinal) genetic effect estimates. Analytic derivations of longitudinal genetic effects are presented, accounting for the following scenarios: 1) treatment allocated independently of a genetic variant, 2) treatment that mediates the genetic effect, 3) treatment that modifies the genetic effect. We additionally evaluate treatment modelling strategies on bias, the root mean squared error (RMSE), coverage, and rejection rate. We show that in the absence of treatment by gene effect modification or mediation, genetic effect estimates will be unbiased. In simulated data we found that conditional models accounting for treatment, confounding, and effect modification were generally unbiased with appropriate levels of confidence interval coverage. Ignoring the longitudinal nature of treatment prescription, however (e.g. because of incomplete records in longitudinal data), biased these conditional models to a similar degree (or worse) as simply ignoring treatment. The mere presence of (drug) treatment affecting a GWAS phenotype is insufficient to bias genetic associations with quantitative traits. While treatment may bias associations through effect modification and mediation, this might not occur frequently enough to warrant general concern at the presence of treated subjects in GWAS. Should treatment by gene effect modification or mediation be present however, current GWAS approaches attempting to adjust for treatment insufficiently account for the multivariable and longitudinal nature of treatment trajectories and hence genetic estimates may still be biased.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0221209</identifier><identifier>PMID: 31461463</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accounting ; Bias ; Biology and Life Sciences ; Blood pressure ; Cardiovascular disease ; Computer Simulation ; Confidence intervals ; Consortia ; Diabetes ; Drug interactions ; Drug Prescriptions ; Drug therapy ; Engineering and Technology ; Estimates ; Genes ; Genetic analysis ; Genetic aspects ; Genetic Diseases, Inborn - drug therapy ; Genetic Diseases, Inborn - epidemiology ; Genetic Diseases, Inborn - genetics ; Genetic diversity ; Genetic effects ; Genetic research ; Genetic variance ; Genetics ; Genome-Wide Association Study ; Genomes ; Genotype &amp; phenotype ; Graph theory ; Heart ; Humans ; Longitude ; Mediation ; Medical treatment ; Medicine and Health Sciences ; Negotiating ; Pharmacogenomic Variants - genetics ; Pharmacy ; Phenotype ; Phenotypes ; Physiological aspects ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Regression analysis ; Rejection rate ; Research and Analysis Methods ; Root-mean-square errors ; Studies ; Trajectory analysis ; Type 2 diabetes</subject><ispartof>PloS one, 2019-08, Vol.14 (8), p.e0221209-e0221209</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Schmidt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Schmidt et al 2019 Schmidt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-26368f6655bef8aae9d92d1b25393c816cadb2e8eec16d3b1182e5f65bfa26fc3</citedby><cites>FETCH-LOGICAL-c692t-26368f6655bef8aae9d92d1b25393c816cadb2e8eec16d3b1182e5f65bfa26fc3</cites><orcidid>0000-0003-1327-0424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31461463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Luque-Fernandez, Miguel Angel</contributor><creatorcontrib>Schmidt, Amand F</creatorcontrib><creatorcontrib>Heerspink, Hiddo J L</creatorcontrib><creatorcontrib>Denig, Petra</creatorcontrib><creatorcontrib>Finan, Chris</creatorcontrib><creatorcontrib>Groenwold, Rolf H H</creatorcontrib><title>When drug treatments bias genetic studies: Mediation and interaction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Increasingly, genetic analyses are conducted using information from subjects with established disease, who often receive concomitant treatment. We determined when treatment may bias genetic associations with a quantitative trait. Graph theory and simulated data were used to explore the impact of drug prescriptions on (longitudinal) genetic effect estimates. Analytic derivations of longitudinal genetic effects are presented, accounting for the following scenarios: 1) treatment allocated independently of a genetic variant, 2) treatment that mediates the genetic effect, 3) treatment that modifies the genetic effect. We additionally evaluate treatment modelling strategies on bias, the root mean squared error (RMSE), coverage, and rejection rate. We show that in the absence of treatment by gene effect modification or mediation, genetic effect estimates will be unbiased. In simulated data we found that conditional models accounting for treatment, confounding, and effect modification were generally unbiased with appropriate levels of confidence interval coverage. Ignoring the longitudinal nature of treatment prescription, however (e.g. because of incomplete records in longitudinal data), biased these conditional models to a similar degree (or worse) as simply ignoring treatment. The mere presence of (drug) treatment affecting a GWAS phenotype is insufficient to bias genetic associations with quantitative traits. While treatment may bias associations through effect modification and mediation, this might not occur frequently enough to warrant general concern at the presence of treated subjects in GWAS. Should treatment by gene effect modification or mediation be present however, current GWAS approaches attempting to adjust for treatment insufficiently account for the multivariable and longitudinal nature of treatment trajectories and hence genetic estimates may still be biased.</description><subject>Accounting</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Cardiovascular disease</subject><subject>Computer Simulation</subject><subject>Confidence intervals</subject><subject>Consortia</subject><subject>Diabetes</subject><subject>Drug interactions</subject><subject>Drug Prescriptions</subject><subject>Drug therapy</subject><subject>Engineering and Technology</subject><subject>Estimates</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic Diseases, Inborn - drug therapy</subject><subject>Genetic Diseases, Inborn - epidemiology</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic diversity</subject><subject>Genetic effects</subject><subject>Genetic research</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Graph theory</subject><subject>Heart</subject><subject>Humans</subject><subject>Longitude</subject><subject>Mediation</subject><subject>Medical treatment</subject><subject>Medicine and Health Sciences</subject><subject>Negotiating</subject><subject>Pharmacogenomic Variants - genetics</subject><subject>Pharmacy</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Regression analysis</subject><subject>Rejection rate</subject><subject>Research and Analysis Methods</subject><subject>Root-mean-square errors</subject><subject>Studies</subject><subject>Trajectory analysis</subject><subject>Type 2 diabetes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjE3SpK0XwrJ-Daws-HkZTpPTTpZOMiap6L83s9NdprIXkkC-nvMm5-TNssekWBJWkVeXbvQWhuXWWVwWlBJaNHeyY9IwuhC0YHcP5kfZgxAui4KzWoj72REjpUidHWdvf6zR5tqPfR49QtygjSFvDYS8R4vRqDzEURsMr_NPqA1E42wOVufGRvSgduuH2b0OhoCPpvEk-_b-3dezj4vziw-rs9PzhRINjQsqmKg7IThvsasBsNEN1aSlnDVM1UQo0C3FGlERoVlLSE2Rd4K3HVDRKXaSPd3rbgcX5FSAICmtSSOqWpSJWO0J7eBSbr3ZgP8jHRh5teF8L8GnpAaUZcUKyimUXV2XbacAhQDetqJRnKenJa03021ju0GtUmU8DDPR-Yk1a9m7X1JUhLG6SgIvJgHvfo4YotyYoHAYwKIbr95NS05F1ST02T_o7dlNVA8pAWM7l-5VO1F5ypsqQZzRRC1voVLTuDEquaUzaX8W8HIWkJiIv2MPYwhy9eXz_7MX3-fs8wN2jTDEdXDDuLNMmIPlHlTeheCxuykyKeTO7NfVkDuzy8nsKezJ4QfdBF27m_0FXfv52w</recordid><startdate>20190828</startdate><enddate>20190828</enddate><creator>Schmidt, Amand F</creator><creator>Heerspink, Hiddo J L</creator><creator>Denig, Petra</creator><creator>Finan, Chris</creator><creator>Groenwold, Rolf H H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1327-0424</orcidid></search><sort><creationdate>20190828</creationdate><title>When drug treatments bias genetic studies: Mediation and interaction</title><author>Schmidt, Amand F ; Heerspink, Hiddo J L ; Denig, Petra ; Finan, Chris ; Groenwold, Rolf H H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-26368f6655bef8aae9d92d1b25393c816cadb2e8eec16d3b1182e5f65bfa26fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accounting</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Cardiovascular disease</topic><topic>Computer Simulation</topic><topic>Confidence intervals</topic><topic>Consortia</topic><topic>Diabetes</topic><topic>Drug interactions</topic><topic>Drug Prescriptions</topic><topic>Drug therapy</topic><topic>Engineering and Technology</topic><topic>Estimates</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic Diseases, Inborn - drug therapy</topic><topic>Genetic Diseases, Inborn - epidemiology</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic diversity</topic><topic>Genetic effects</topic><topic>Genetic research</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Graph theory</topic><topic>Heart</topic><topic>Humans</topic><topic>Longitude</topic><topic>Mediation</topic><topic>Medical treatment</topic><topic>Medicine and Health Sciences</topic><topic>Negotiating</topic><topic>Pharmacogenomic Variants - genetics</topic><topic>Pharmacy</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Regression analysis</topic><topic>Rejection rate</topic><topic>Research and Analysis Methods</topic><topic>Root-mean-square errors</topic><topic>Studies</topic><topic>Trajectory analysis</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Amand F</creatorcontrib><creatorcontrib>Heerspink, Hiddo J L</creatorcontrib><creatorcontrib>Denig, Petra</creatorcontrib><creatorcontrib>Finan, Chris</creatorcontrib><creatorcontrib>Groenwold, Rolf H H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Amand F</au><au>Heerspink, Hiddo J L</au><au>Denig, Petra</au><au>Finan, Chris</au><au>Groenwold, Rolf H H</au><au>Luque-Fernandez, Miguel Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When drug treatments bias genetic studies: Mediation and interaction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-08-28</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>e0221209</spage><epage>e0221209</epage><pages>e0221209-e0221209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Increasingly, genetic analyses are conducted using information from subjects with established disease, who often receive concomitant treatment. We determined when treatment may bias genetic associations with a quantitative trait. Graph theory and simulated data were used to explore the impact of drug prescriptions on (longitudinal) genetic effect estimates. Analytic derivations of longitudinal genetic effects are presented, accounting for the following scenarios: 1) treatment allocated independently of a genetic variant, 2) treatment that mediates the genetic effect, 3) treatment that modifies the genetic effect. We additionally evaluate treatment modelling strategies on bias, the root mean squared error (RMSE), coverage, and rejection rate. We show that in the absence of treatment by gene effect modification or mediation, genetic effect estimates will be unbiased. In simulated data we found that conditional models accounting for treatment, confounding, and effect modification were generally unbiased with appropriate levels of confidence interval coverage. Ignoring the longitudinal nature of treatment prescription, however (e.g. because of incomplete records in longitudinal data), biased these conditional models to a similar degree (or worse) as simply ignoring treatment. The mere presence of (drug) treatment affecting a GWAS phenotype is insufficient to bias genetic associations with quantitative traits. While treatment may bias associations through effect modification and mediation, this might not occur frequently enough to warrant general concern at the presence of treated subjects in GWAS. Should treatment by gene effect modification or mediation be present however, current GWAS approaches attempting to adjust for treatment insufficiently account for the multivariable and longitudinal nature of treatment trajectories and hence genetic estimates may still be biased.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31461463</pmid><doi>10.1371/journal.pone.0221209</doi><tpages>e0221209</tpages><orcidid>https://orcid.org/0000-0003-1327-0424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-08, Vol.14 (8), p.e0221209-e0221209
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2281967864
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Accounting
Bias
Biology and Life Sciences
Blood pressure
Cardiovascular disease
Computer Simulation
Confidence intervals
Consortia
Diabetes
Drug interactions
Drug Prescriptions
Drug therapy
Engineering and Technology
Estimates
Genes
Genetic analysis
Genetic aspects
Genetic Diseases, Inborn - drug therapy
Genetic Diseases, Inborn - epidemiology
Genetic Diseases, Inborn - genetics
Genetic diversity
Genetic effects
Genetic research
Genetic variance
Genetics
Genome-Wide Association Study
Genomes
Genotype & phenotype
Graph theory
Heart
Humans
Longitude
Mediation
Medical treatment
Medicine and Health Sciences
Negotiating
Pharmacogenomic Variants - genetics
Pharmacy
Phenotype
Phenotypes
Physiological aspects
Quantitative trait loci
Quantitative Trait Loci - genetics
Regression analysis
Rejection rate
Research and Analysis Methods
Root-mean-square errors
Studies
Trajectory analysis
Type 2 diabetes
title When drug treatments bias genetic studies: Mediation and interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20drug%20treatments%20bias%20genetic%20studies:%20Mediation%20and%20interaction&rft.jtitle=PloS%20one&rft.au=Schmidt,%20Amand%20F&rft.date=2019-08-28&rft.volume=14&rft.issue=8&rft.spage=e0221209&rft.epage=e0221209&rft.pages=e0221209-e0221209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0221209&rft_dat=%3Cgale_plos_%3EA597678532%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281967864&rft_id=info:pmid/31461463&rft_galeid=A597678532&rft_doaj_id=oai_doaj_org_article_4730252a4f884bfcae66a5bb69c55e9d&rfr_iscdi=true