A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis

Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-07, Vol.14 (7), p.e0218999
Hauptverfasser: Talpin, Alice, Kattah, Michael G, Advincula, Rommel, Fadrosh, Douglas, Lynch, Kole, LaMere, Brandon, Fujimura, Kei E, Nagalingam, Nabeetha A, Malynn, Barbara A, Lynch, Susan V, Ma, Averil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0218999
container_title PloS one
container_volume 14
creator Talpin, Alice
Kattah, Michael G
Advincula, Rommel
Fadrosh, Douglas
Lynch, Kole
LaMere, Brandon
Fujimura, Kei E
Nagalingam, Nabeetha A
Malynn, Barbara A
Lynch, Susan V
Ma, Averil
description Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3β and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3β and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.
doi_str_mv 10.1371/journal.pone.0218999
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2256178810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592987690</galeid><doaj_id>oai_doaj_org_article_2fb8e9cbe26c4c2dae970efafca2d269</doaj_id><sourcerecordid>A592987690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-2d4b74293e943985f36a448d748ef486479db1b34a1d9082573c27299ff2344d3</originalsourceid><addsrcrecordid>eNqNkl2L3CAUhkNp6W63_QelDRQKvZhp_IjRm8Kw9GNgYaFft2L0OOOQxKw6y_bf1-lklwm0ULzQo8951Ze3KF6iaolIg97v_D4MqluOfoBlhREXQjwqzpEgeMFwRR6frM-KZzHuqqomnLGnxRlBWNSY8fPiZoWr0g2lgcEEl5wuNXRdLAPEFJQbYj5Mee3yVaUaklu0SicILpcjjMkZKOFuzHh0fsiEKQ8FhFuIpfZ9D0PM6Nb34GNS0cXnxROruggvpvmi-PHp4_fLL4ur68_ry9XVQjOM0wIb2jYUCwKCEsFrS5iilJuGcrCUM9oI06KWUIWMqDiuG6Jxg4WwFhNKDbkoXh91x85HObkVJcY1Qw3nqMrE-kgYr3ZyDK5X4Zf0ysk_Gz5spArZkg4kti0HoVvATFONjQLRVGCV1QobzETW-jDdtm97MBqGbF83E52fDG4rN_5Wsvxbyuss8GYSCP5mnx3_x5MnaqPyq9xgfRbTvYtarmqBBW-YOFDLv1B5GOidznmxLu_PGt7NGjKT4C5t1D5Guf729f_Z659z9u0JuwXVpW303T7lrMQ5SI-gDj7GAPbBOVTJQ9zv3ZCHuMsp7rnt1anrD033-Sa_ATli_Mo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256178810</pqid></control><display><type>article</type><title>A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Talpin, Alice ; Kattah, Michael G ; Advincula, Rommel ; Fadrosh, Douglas ; Lynch, Kole ; LaMere, Brandon ; Fujimura, Kei E ; Nagalingam, Nabeetha A ; Malynn, Barbara A ; Lynch, Susan V ; Ma, Averil</creator><contributor>Mizoguchi, Emiko</contributor><creatorcontrib>Talpin, Alice ; Kattah, Michael G ; Advincula, Rommel ; Fadrosh, Douglas ; Lynch, Kole ; LaMere, Brandon ; Fujimura, Kei E ; Nagalingam, Nabeetha A ; Malynn, Barbara A ; Lynch, Susan V ; Ma, Averil ; Mizoguchi, Emiko</creatorcontrib><description>Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3β and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3β and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218999</identifier><identifier>PMID: 31295268</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibacterial agents ; Antibiotics ; Antiinfectives and antibacterials ; Asthma ; Biology and Life Sciences ; CD11c antigen ; Colitis ; Dendritic cells ; Dendritic Cells - microbiology ; Development and progression ; Disease susceptibility ; Dysbacteriosis ; Dysbiosis ; Dysbiosis - drug therapy ; Dysbiosis - genetics ; Dysbiosis - microbiology ; Enzymes ; Epithelial cells ; Feces ; Gastrointestinal Microbiome - drug effects ; Gene expression ; Gene Expression Regulation - drug effects ; Genes ; Genetic aspects ; Health aspects ; Homeostasis ; Host-bacteria relationships ; Humans ; Inflammation ; Inflammation - drug therapy ; Inflammation - genetics ; Inflammation - microbiology ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - drug therapy ; Inflammatory Bowel Diseases - genetics ; Inflammatory Bowel Diseases - microbiology ; Intestinal microflora ; Intestine ; Intestines ; Intestines - microbiology ; Lymphocytes ; Medicine ; Medicine and Health Sciences ; Mice ; Mice, Knockout ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; Pancreatitis-Associated Proteins - genetics ; Peptides ; Peptides - pharmacology ; Perturbation ; Phylogenetics ; Physiological aspects ; Ribonuclease, Pancreatic - genetics ; Risk factors ; Symbiosis - drug effects ; Tumor necrosis factor ; Tumor Necrosis Factor alpha-Induced Protein 3 - genetics ; Weaning</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0218999</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Talpin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Talpin et al 2019 Talpin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-2d4b74293e943985f36a448d748ef486479db1b34a1d9082573c27299ff2344d3</citedby><cites>FETCH-LOGICAL-c622t-2d4b74293e943985f36a448d748ef486479db1b34a1d9082573c27299ff2344d3</cites><orcidid>0000-0003-4817-1258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31295268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mizoguchi, Emiko</contributor><creatorcontrib>Talpin, Alice</creatorcontrib><creatorcontrib>Kattah, Michael G</creatorcontrib><creatorcontrib>Advincula, Rommel</creatorcontrib><creatorcontrib>Fadrosh, Douglas</creatorcontrib><creatorcontrib>Lynch, Kole</creatorcontrib><creatorcontrib>LaMere, Brandon</creatorcontrib><creatorcontrib>Fujimura, Kei E</creatorcontrib><creatorcontrib>Nagalingam, Nabeetha A</creatorcontrib><creatorcontrib>Malynn, Barbara A</creatorcontrib><creatorcontrib>Lynch, Susan V</creatorcontrib><creatorcontrib>Ma, Averil</creatorcontrib><title>A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3β and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3β and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial agents</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Asthma</subject><subject>Biology and Life Sciences</subject><subject>CD11c antigen</subject><subject>Colitis</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - microbiology</subject><subject>Development and progression</subject><subject>Disease susceptibility</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis</subject><subject>Dysbiosis - drug therapy</subject><subject>Dysbiosis - genetics</subject><subject>Dysbiosis - microbiology</subject><subject>Enzymes</subject><subject>Epithelial cells</subject><subject>Feces</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Host-bacteria relationships</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - genetics</subject><subject>Inflammation - microbiology</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - drug therapy</subject><subject>Inflammatory Bowel Diseases - genetics</subject><subject>Inflammatory Bowel Diseases - microbiology</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Intestines - microbiology</subject><subject>Lymphocytes</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Pancreatitis-Associated Proteins - genetics</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Perturbation</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>Ribonuclease, Pancreatic - genetics</subject><subject>Risk factors</subject><subject>Symbiosis - drug effects</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor alpha-Induced Protein 3 - genetics</subject><subject>Weaning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L3CAUhkNp6W63_QelDRQKvZhp_IjRm8Kw9GNgYaFft2L0OOOQxKw6y_bf1-lklwm0ULzQo8951Ze3KF6iaolIg97v_D4MqluOfoBlhREXQjwqzpEgeMFwRR6frM-KZzHuqqomnLGnxRlBWNSY8fPiZoWr0g2lgcEEl5wuNXRdLAPEFJQbYj5Mee3yVaUaklu0SicILpcjjMkZKOFuzHh0fsiEKQ8FhFuIpfZ9D0PM6Nb34GNS0cXnxROruggvpvmi-PHp4_fLL4ur68_ry9XVQjOM0wIb2jYUCwKCEsFrS5iilJuGcrCUM9oI06KWUIWMqDiuG6Jxg4WwFhNKDbkoXh91x85HObkVJcY1Qw3nqMrE-kgYr3ZyDK5X4Zf0ysk_Gz5spArZkg4kti0HoVvATFONjQLRVGCV1QobzETW-jDdtm97MBqGbF83E52fDG4rN_5Wsvxbyuss8GYSCP5mnx3_x5MnaqPyq9xgfRbTvYtarmqBBW-YOFDLv1B5GOidznmxLu_PGt7NGjKT4C5t1D5Guf729f_Z659z9u0JuwXVpW303T7lrMQ5SI-gDj7GAPbBOVTJQ9zv3ZCHuMsp7rnt1anrD033-Sa_ATli_Mo</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Talpin, Alice</creator><creator>Kattah, Michael G</creator><creator>Advincula, Rommel</creator><creator>Fadrosh, Douglas</creator><creator>Lynch, Kole</creator><creator>LaMere, Brandon</creator><creator>Fujimura, Kei E</creator><creator>Nagalingam, Nabeetha A</creator><creator>Malynn, Barbara A</creator><creator>Lynch, Susan V</creator><creator>Ma, Averil</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4817-1258</orcidid></search><sort><creationdate>20190711</creationdate><title>A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis</title><author>Talpin, Alice ; Kattah, Michael G ; Advincula, Rommel ; Fadrosh, Douglas ; Lynch, Kole ; LaMere, Brandon ; Fujimura, Kei E ; Nagalingam, Nabeetha A ; Malynn, Barbara A ; Lynch, Susan V ; Ma, Averil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-2d4b74293e943985f36a448d748ef486479db1b34a1d9082573c27299ff2344d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial agents</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Asthma</topic><topic>Biology and Life Sciences</topic><topic>CD11c antigen</topic><topic>Colitis</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - microbiology</topic><topic>Development and progression</topic><topic>Disease susceptibility</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis</topic><topic>Dysbiosis - drug therapy</topic><topic>Dysbiosis - genetics</topic><topic>Dysbiosis - microbiology</topic><topic>Enzymes</topic><topic>Epithelial cells</topic><topic>Feces</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Host-bacteria relationships</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - genetics</topic><topic>Inflammation - microbiology</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - drug therapy</topic><topic>Inflammatory Bowel Diseases - genetics</topic><topic>Inflammatory Bowel Diseases - microbiology</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Intestines - microbiology</topic><topic>Lymphocytes</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Pancreatitis-Associated Proteins - genetics</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Perturbation</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>Ribonuclease, Pancreatic - genetics</topic><topic>Risk factors</topic><topic>Symbiosis - drug effects</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor alpha-Induced Protein 3 - genetics</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talpin, Alice</creatorcontrib><creatorcontrib>Kattah, Michael G</creatorcontrib><creatorcontrib>Advincula, Rommel</creatorcontrib><creatorcontrib>Fadrosh, Douglas</creatorcontrib><creatorcontrib>Lynch, Kole</creatorcontrib><creatorcontrib>LaMere, Brandon</creatorcontrib><creatorcontrib>Fujimura, Kei E</creatorcontrib><creatorcontrib>Nagalingam, Nabeetha A</creatorcontrib><creatorcontrib>Malynn, Barbara A</creatorcontrib><creatorcontrib>Lynch, Susan V</creatorcontrib><creatorcontrib>Ma, Averil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talpin, Alice</au><au>Kattah, Michael G</au><au>Advincula, Rommel</au><au>Fadrosh, Douglas</au><au>Lynch, Kole</au><au>LaMere, Brandon</au><au>Fujimura, Kei E</au><au>Nagalingam, Nabeetha A</au><au>Malynn, Barbara A</au><au>Lynch, Susan V</au><au>Ma, Averil</au><au>Mizoguchi, Emiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-11</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0218999</spage><pages>e0218999-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3β and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3β and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31295268</pmid><doi>10.1371/journal.pone.0218999</doi><tpages>e0218999</tpages><orcidid>https://orcid.org/0000-0003-4817-1258</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-07, Vol.14 (7), p.e0218999
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2256178810
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Anti-Bacterial Agents - pharmacology
Antibacterial agents
Antibiotics
Antiinfectives and antibacterials
Asthma
Biology and Life Sciences
CD11c antigen
Colitis
Dendritic cells
Dendritic Cells - microbiology
Development and progression
Disease susceptibility
Dysbacteriosis
Dysbiosis
Dysbiosis - drug therapy
Dysbiosis - genetics
Dysbiosis - microbiology
Enzymes
Epithelial cells
Feces
Gastrointestinal Microbiome - drug effects
Gene expression
Gene Expression Regulation - drug effects
Genes
Genetic aspects
Health aspects
Homeostasis
Host-bacteria relationships
Humans
Inflammation
Inflammation - drug therapy
Inflammation - genetics
Inflammation - microbiology
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory Bowel Diseases - drug therapy
Inflammatory Bowel Diseases - genetics
Inflammatory Bowel Diseases - microbiology
Intestinal microflora
Intestine
Intestines
Intestines - microbiology
Lymphocytes
Medicine
Medicine and Health Sciences
Mice
Mice, Knockout
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Pancreatitis-Associated Proteins - genetics
Peptides
Peptides - pharmacology
Perturbation
Phylogenetics
Physiological aspects
Ribonuclease, Pancreatic - genetics
Risk factors
Symbiosis - drug effects
Tumor necrosis factor
Tumor Necrosis Factor alpha-Induced Protein 3 - genetics
Weaning
title A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A20%20in%20dendritic%20cells%20restrains%20intestinal%20anti-bacterial%20peptide%20expression%20and%20preserves%20commensal%20homeostasis&rft.jtitle=PloS%20one&rft.au=Talpin,%20Alice&rft.date=2019-07-11&rft.volume=14&rft.issue=7&rft.spage=e0218999&rft.pages=e0218999-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218999&rft_dat=%3Cgale_plos_%3EA592987690%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256178810&rft_id=info:pmid/31295268&rft_galeid=A592987690&rft_doaj_id=oai_doaj_org_article_2fb8e9cbe26c4c2dae970efafca2d269&rfr_iscdi=true