Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks

State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-07, Vol.14 (7), p.e0218771
Hauptverfasser: Ibáñez-Soria, David, Soria-Frisch, Aureli, Garcia-Ojalvo, Jordi, Ruffini, Giulio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0218771
container_title PloS one
container_volume 14
creator Ibáñez-Soria, David
Soria-Frisch, Aureli
Garcia-Ojalvo, Jordi
Ruffini, Giulio
description State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching the stimulation frequency and its harmonics. Here we explore the dynamical character of the SSVEP response by proposing a novel non-stationary methodology for SSVEP detection based on an ensemble of Echo State Networks (ESN). The performance of this dynamical approach is compared to stationary canonical correlation analysis (CCA) for the detection of 6 visual stimulation frequencies ranging from 12 to 22 Hz. ESN-based methodology outperformed CCA, achieving an average information transfer rate of 47 bits/minute when simulating a BCI system of 6 degrees of freedom. However, for some subjects and stimulation frequencies the detection accuracy of CCA exceeds that of ESN. The comparison suggests that each methodology captures different features of the SSVEP response: while CCA captures purely stationary patterns, the ESN-based approach presented here is capable of detecting the non-stationary nature of the SSVEP.
doi_str_mv 10.1371/journal.pone.0218771
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2252704840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592311681</galeid><doaj_id>oai_doaj_org_article_e17958cf91f64bcfa1149eb740f988d6</doaj_id><sourcerecordid>A592311681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c734t-344064108790e216e61ef4dba4cb5066b010c3f9973c8a1529768e12644c73cf3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eJjO3ZygzRVfFSaNImvW8t1TlpvaVxsZzB-PU6bTQvaBYqiOD7P-9rn2CfLngOZA5Pw7sL1vtPtfOc6nBMKpZTwIDuGitGZoIQ9vDM-yp6EcEFIwUohHmdHDKgUBSmOs91io702Eb39o6N1Xe6aPG4w71w3C3E_pf113unYexyCIaKur_cxzK9s6HWb45W7xDrfuYhdtLoNeR9st87RbFx-IDuMv5y_DE-zR00C8Nn4Pcm-f_zwbfF5dnb-abk4PZsZyXicMc6J4EBKWRGkIFAANrxeaW5WBRFiRYAY1lSVZKbUUNBKihKBCs6TgWnYSfby4LtrXVBjsYKitKCS8JKTRCwPRO30hdp5u02JKqet2k84v1baR2taVAiyKkrTVNAIvjKNBuAVriQnTVWWtUhe78fV-tUWa5PK4HU7MZ1GOrtRa3elhAAoJEsGcDAwoTfKo0FvdNwLb3-GlxJJFRPAqUyaN-Oi3v3sMUS1tcFg2-oOXb_PldFS0GLY36t_0PsrMlJrnZK2XePSXs1gqk6LijIAUUKi5vdQ6alxa026jY1N8xPB24kgMRF_x7XuQ1DLr1_-nz3_MWVf32E3qNu4Ca7thzsbpiAfi-tdCB6b24MBooZmuqmGGppJjc2UZC_uHuqt6KZ72F8elRnX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252704840</pqid></control><display><type>article</type><title>Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ibáñez-Soria, David ; Soria-Frisch, Aureli ; Garcia-Ojalvo, Jordi ; Ruffini, Giulio</creator><contributor>Cymbalyuk, Gennady</contributor><creatorcontrib>Ibáñez-Soria, David ; Soria-Frisch, Aureli ; Garcia-Ojalvo, Jordi ; Ruffini, Giulio ; Cymbalyuk, Gennady</creatorcontrib><description>State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching the stimulation frequency and its harmonics. Here we explore the dynamical character of the SSVEP response by proposing a novel non-stationary methodology for SSVEP detection based on an ensemble of Echo State Networks (ESN). The performance of this dynamical approach is compared to stationary canonical correlation analysis (CCA) for the detection of 6 visual stimulation frequencies ranging from 12 to 22 Hz. ESN-based methodology outperformed CCA, achieving an average information transfer rate of 47 bits/minute when simulating a BCI system of 6 degrees of freedom. However, for some subjects and stimulation frequencies the detection accuracy of CCA exceeds that of ESN. The comparison suggests that each methodology captures different features of the SSVEP response: while CCA captures purely stationary patterns, the ESN-based approach presented here is capable of detecting the non-stationary nature of the SSVEP.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0218771</identifier><identifier>PMID: 31276505</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Artificial neural networks ; Bandpass filters ; Biology and Life Sciences ; Brain research ; Brain-Computer Interfaces ; Computational neuroscience ; Computer and Information Sciences ; Correlation analysis ; Data collection ; Dynamical systems ; Electroencephalography ; Electroencephalography - methods ; Engineering and Technology ; Evoked potentials ; Evoked Potentials, Visual - physiology ; Functional electrical stimulation ; Humans ; Information transfer ; International conferences ; Male ; Man-computer interface ; Measurement ; Medicine and Health Sciences ; Methodology ; Methods ; Middle Aged ; Models, Neurological ; Neural networks ; Neural Networks, Computer ; Neurosciences ; Novels ; Operator theory ; Photic Stimulation - methods ; Physical Sciences ; Research and Analysis Methods ; Social Sciences ; Steady state ; Stimulation ; Vision ; Visual cortex ; Visual Cortex - physiology ; Visual evoked potentials ; Visual stimuli</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0218771</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Ibáñez-Soria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess © 2019 Ibáñez-Soria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (&lt;a href="http://creativecommons.org/licenses/by/4.0/"&gt;http://creativecommons.org/licenses/by/4.0/&lt;/a&gt;), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. &lt;a href="http://creativecommons.org/licenses/by/4.0/"&gt;http://creativecommons.org/licenses/by/4.0/&lt;/a&gt;</rights><rights>2019 Ibáñez-Soria et al 2019 Ibáñez-Soria et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c734t-344064108790e216e61ef4dba4cb5066b010c3f9973c8a1529768e12644c73cf3</citedby><cites>FETCH-LOGICAL-c734t-344064108790e216e61ef4dba4cb5066b010c3f9973c8a1529768e12644c73cf3</cites><orcidid>0000-0002-3716-7520 ; 0000-0003-2901-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611573/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611573/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,26976,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31276505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cymbalyuk, Gennady</contributor><creatorcontrib>Ibáñez-Soria, David</creatorcontrib><creatorcontrib>Soria-Frisch, Aureli</creatorcontrib><creatorcontrib>Garcia-Ojalvo, Jordi</creatorcontrib><creatorcontrib>Ruffini, Giulio</creatorcontrib><title>Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching the stimulation frequency and its harmonics. Here we explore the dynamical character of the SSVEP response by proposing a novel non-stationary methodology for SSVEP detection based on an ensemble of Echo State Networks (ESN). The performance of this dynamical approach is compared to stationary canonical correlation analysis (CCA) for the detection of 6 visual stimulation frequencies ranging from 12 to 22 Hz. ESN-based methodology outperformed CCA, achieving an average information transfer rate of 47 bits/minute when simulating a BCI system of 6 degrees of freedom. However, for some subjects and stimulation frequencies the detection accuracy of CCA exceeds that of ESN. The comparison suggests that each methodology captures different features of the SSVEP response: while CCA captures purely stationary patterns, the ESN-based approach presented here is capable of detecting the non-stationary nature of the SSVEP.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bandpass filters</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Brain-Computer Interfaces</subject><subject>Computational neuroscience</subject><subject>Computer and Information Sciences</subject><subject>Correlation analysis</subject><subject>Data collection</subject><subject>Dynamical systems</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Engineering and Technology</subject><subject>Evoked potentials</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Functional electrical stimulation</subject><subject>Humans</subject><subject>Information transfer</subject><subject>International conferences</subject><subject>Male</subject><subject>Man-computer interface</subject><subject>Measurement</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Models, Neurological</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurosciences</subject><subject>Novels</subject><subject>Operator theory</subject><subject>Photic Stimulation - methods</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Steady state</subject><subject>Stimulation</subject><subject>Vision</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual evoked potentials</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eJjO3ZygzRVfFSaNImvW8t1TlpvaVxsZzB-PU6bTQvaBYqiOD7P-9rn2CfLngOZA5Pw7sL1vtPtfOc6nBMKpZTwIDuGitGZoIQ9vDM-yp6EcEFIwUohHmdHDKgUBSmOs91io702Eb39o6N1Xe6aPG4w71w3C3E_pf113unYexyCIaKur_cxzK9s6HWb45W7xDrfuYhdtLoNeR9st87RbFx-IDuMv5y_DE-zR00C8Nn4Pcm-f_zwbfF5dnb-abk4PZsZyXicMc6J4EBKWRGkIFAANrxeaW5WBRFiRYAY1lSVZKbUUNBKihKBCs6TgWnYSfby4LtrXVBjsYKitKCS8JKTRCwPRO30hdp5u02JKqet2k84v1baR2taVAiyKkrTVNAIvjKNBuAVriQnTVWWtUhe78fV-tUWa5PK4HU7MZ1GOrtRa3elhAAoJEsGcDAwoTfKo0FvdNwLb3-GlxJJFRPAqUyaN-Oi3v3sMUS1tcFg2-oOXb_PldFS0GLY36t_0PsrMlJrnZK2XePSXs1gqk6LijIAUUKi5vdQ6alxa026jY1N8xPB24kgMRF_x7XuQ1DLr1_-nz3_MWVf32E3qNu4Ca7thzsbpiAfi-tdCB6b24MBooZmuqmGGppJjc2UZC_uHuqt6KZ72F8elRnX</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Ibáñez-Soria, David</creator><creator>Soria-Frisch, Aureli</creator><creator>Garcia-Ojalvo, Jordi</creator><creator>Ruffini, Giulio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3716-7520</orcidid><orcidid>https://orcid.org/0000-0003-2901-7909</orcidid></search><sort><creationdate>20190705</creationdate><title>Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks</title><author>Ibáñez-Soria, David ; Soria-Frisch, Aureli ; Garcia-Ojalvo, Jordi ; Ruffini, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c734t-344064108790e216e61ef4dba4cb5066b010c3f9973c8a1529768e12644c73cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bandpass filters</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Brain-Computer Interfaces</topic><topic>Computational neuroscience</topic><topic>Computer and Information Sciences</topic><topic>Correlation analysis</topic><topic>Data collection</topic><topic>Dynamical systems</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Engineering and Technology</topic><topic>Evoked potentials</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Functional electrical stimulation</topic><topic>Humans</topic><topic>Information transfer</topic><topic>International conferences</topic><topic>Male</topic><topic>Man-computer interface</topic><topic>Measurement</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Models, Neurological</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurosciences</topic><topic>Novels</topic><topic>Operator theory</topic><topic>Photic Stimulation - methods</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Steady state</topic><topic>Stimulation</topic><topic>Vision</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual evoked potentials</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibáñez-Soria, David</creatorcontrib><creatorcontrib>Soria-Frisch, Aureli</creatorcontrib><creatorcontrib>Garcia-Ojalvo, Jordi</creatorcontrib><creatorcontrib>Ruffini, Giulio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibáñez-Soria, David</au><au>Soria-Frisch, Aureli</au><au>Garcia-Ojalvo, Jordi</au><au>Ruffini, Giulio</au><au>Cymbalyuk, Gennady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-05</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0218771</spage><pages>e0218771-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching the stimulation frequency and its harmonics. Here we explore the dynamical character of the SSVEP response by proposing a novel non-stationary methodology for SSVEP detection based on an ensemble of Echo State Networks (ESN). The performance of this dynamical approach is compared to stationary canonical correlation analysis (CCA) for the detection of 6 visual stimulation frequencies ranging from 12 to 22 Hz. ESN-based methodology outperformed CCA, achieving an average information transfer rate of 47 bits/minute when simulating a BCI system of 6 degrees of freedom. However, for some subjects and stimulation frequencies the detection accuracy of CCA exceeds that of ESN. The comparison suggests that each methodology captures different features of the SSVEP response: while CCA captures purely stationary patterns, the ESN-based approach presented here is capable of detecting the non-stationary nature of the SSVEP.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31276505</pmid><doi>10.1371/journal.pone.0218771</doi><tpages>e0218771</tpages><orcidid>https://orcid.org/0000-0002-3716-7520</orcidid><orcidid>https://orcid.org/0000-0003-2901-7909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-07, Vol.14 (7), p.e0218771
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2252704840
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); Recercat; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Algorithms
Artificial neural networks
Bandpass filters
Biology and Life Sciences
Brain research
Brain-Computer Interfaces
Computational neuroscience
Computer and Information Sciences
Correlation analysis
Data collection
Dynamical systems
Electroencephalography
Electroencephalography - methods
Engineering and Technology
Evoked potentials
Evoked Potentials, Visual - physiology
Functional electrical stimulation
Humans
Information transfer
International conferences
Male
Man-computer interface
Measurement
Medicine and Health Sciences
Methodology
Methods
Middle Aged
Models, Neurological
Neural networks
Neural Networks, Computer
Neurosciences
Novels
Operator theory
Photic Stimulation - methods
Physical Sciences
Research and Analysis Methods
Social Sciences
Steady state
Stimulation
Vision
Visual cortex
Visual Cortex - physiology
Visual evoked potentials
Visual stimuli
title Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20non-stationary%20nature%20of%20steady-state%20visual%20evoked%20potentials%20using%20echo%20state%20networks&rft.jtitle=PloS%20one&rft.au=Ib%C3%A1%C3%B1ez-Soria,%20David&rft.date=2019-07-05&rft.volume=14&rft.issue=7&rft.spage=e0218771&rft.pages=e0218771-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0218771&rft_dat=%3Cgale_plos_%3EA592311681%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252704840&rft_id=info:pmid/31276505&rft_galeid=A592311681&rft_doaj_id=oai_doaj_org_article_e17958cf91f64bcfa1149eb740f988d6&rfr_iscdi=true