Development of a SNP barcode to genotype Babesia microti infections

Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2019-03, Vol.13 (3), p.e0007194-e0007194
Hauptverfasser: Baniecki, Mary Lynn, Moon, Jade, Sani, Kian, Lemieux, Jacob E, Schaffner, Stephen F, Sabeti, Pardis C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0007194
container_issue 3
container_start_page e0007194
container_title PLoS neglected tropical diseases
container_volume 13
creator Baniecki, Mary Lynn
Moon, Jade
Sani, Kian
Lemieux, Jacob E
Schaffner, Stephen F
Sabeti, Pardis C
description Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B. microti, we developed a single nucleotide polymorphism (SNP)-based high resolution melt (HRM) surveillance tool. We developed our HRM assay using available sequence data and identified 775 SNPs. From these candidate SNPs, we developed a 32-SNP barcode that is robust and differentiates geographically distinct populations; it contains SNPs that are putatively neutral, located in nuclear, mitochondrial, and apicoplastal regions. The assays are reproducible and robust, requiring a small quantity of DNA (limit of detection as low as 10 pg.). We analyzed the performance of our HRM assay using 26 B. microti clinical samples used in our WGS study from babesiosis endemic regions in the United States. We identified a minimal barcode consisting of 25 SNPs that differentiate geographically distinct populations across all clinical samples evaluated (average minor allele frequency > 0.22). Supporting our previous WGS findings, our 25-SNP barcode identified distinct barcode signatures that segregate B. microti into two lineages: Northeast and Midwest, with the Northeast having three subpopulations: Connecticut/Rhode Island, Nantucket, and the R1 reference group. Our 25-SNP HRM barcode provides a robust means genetic marker set that will aid in tracking the increasing incidence and expanding geographic range of B. microti infections.
doi_str_mv 10.1371/journal.pntd.0007194
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2252312200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581353279</galeid><doaj_id>oai_doaj_org_article_9762671b28e14ab8bf75d5707de18bc4</doaj_id><sourcerecordid>A581353279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-1146e115df2d24c6b0de2e77cc71c98f693df88a6355341b894157aad946cd953</originalsourceid><addsrcrecordid>eNptUl2L1DAULaK46-o_EC0I4suM-WySF2EdvxYWFdTnkCa3MxnSpjbtwv57MzPdZUaWPCTcnHvuveeeoniJ0RJTgd9v4zR0Jiz7bnRLhJDAij0qzrGifEEE5Y-P3mfFs5S2CHHFJX5anFGkkGRCnherT3ADIfYtdGMZm9KUv77_LGsz2OigHGO5hi6Otz2UH00NyZuy9XaIoy9914AdfezS8-JJY0KCF_N9Ufz58vn36tvi-sfXq9Xl9cJWhI0LjFkFGHPXEEeYrWrkgIAQ1gpslWwqRV0jpako55ThWiqGuTDGKVZZpzi9KF4fePsQk57nT5oQTigmBKGMuDogXDRb3Q--NcOtjsbrfSAOa22G0dsAWomKVALXRAJmppZ1I7jjAgkHWNaWZa4Pc7WpbsHZLNBgwgnp6U_nN3odb3TFmFRCZYJ3M8EQ_06QRt36ZCEE00Gcct9YCSkl4jhD3_wHfXi6GbU2eYCsf8x17Y5UX-a9Uk7JvuzyAVQ-DvLqYgeNz_GThLdHCRswYdykGKb9bk-B7ADMBkhpgOZeDIz0zpN3XeudJ_XsyZz26ljI-6Q7E9J_FzXbxQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252312200</pqid></control><display><type>article</type><title>Development of a SNP barcode to genotype Babesia microti infections</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Baniecki, Mary Lynn ; Moon, Jade ; Sani, Kian ; Lemieux, Jacob E ; Schaffner, Stephen F ; Sabeti, Pardis C</creator><creatorcontrib>Baniecki, Mary Lynn ; Moon, Jade ; Sani, Kian ; Lemieux, Jacob E ; Schaffner, Stephen F ; Sabeti, Pardis C</creatorcontrib><description>Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B. microti, we developed a single nucleotide polymorphism (SNP)-based high resolution melt (HRM) surveillance tool. We developed our HRM assay using available sequence data and identified 775 SNPs. From these candidate SNPs, we developed a 32-SNP barcode that is robust and differentiates geographically distinct populations; it contains SNPs that are putatively neutral, located in nuclear, mitochondrial, and apicoplastal regions. The assays are reproducible and robust, requiring a small quantity of DNA (limit of detection as low as 10 pg.). We analyzed the performance of our HRM assay using 26 B. microti clinical samples used in our WGS study from babesiosis endemic regions in the United States. We identified a minimal barcode consisting of 25 SNPs that differentiate geographically distinct populations across all clinical samples evaluated (average minor allele frequency &gt; 0.22). Supporting our previous WGS findings, our 25-SNP barcode identified distinct barcode signatures that segregate B. microti into two lineages: Northeast and Midwest, with the Northeast having three subpopulations: Connecticut/Rhode Island, Nantucket, and the R1 reference group. Our 25-SNP HRM barcode provides a robust means genetic marker set that will aid in tracking the increasing incidence and expanding geographic range of B. microti infections.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0007194</identifier><identifier>PMID: 30908478</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arachnids ; Assaying ; Babesia microti ; Babesiosis ; Bar codes ; Biology and Life Sciences ; Chromosomes ; Deoxyribonucleic acid ; Detection ; Diagnosis ; Disease ; DNA ; Evolutionary biology ; Gene frequency ; Gene polymorphism ; Genetic aspects ; Genetic markers ; Genetic polymorphisms ; Genetic testing ; Genomes ; Genomics ; Genotypes ; Health risks ; Hospitals ; Identification ; Identification and classification ; Infections ; Innovations ; Malaria ; Medical laboratories ; Medicine and Health Sciences ; Mitochondria ; Nucleotide sequence ; Nucleotides ; Parasitic diseases ; Pathogens ; People and places ; Polymorphism ; Population genetics ; Populations ; Public health ; Regions ; Research and Analysis Methods ; Robustness ; Samples ; Sentinel surveillance ; Sequencing ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Subpopulations ; Surveillance ; Tick-borne diseases ; Tropical diseases ; Zoonoses</subject><ispartof>PLoS neglected tropical diseases, 2019-03, Vol.13 (3), p.e0007194-e0007194</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Baniecki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Baniecki et al 2019 Baniecki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-1146e115df2d24c6b0de2e77cc71c98f693df88a6355341b894157aad946cd953</citedby><cites>FETCH-LOGICAL-c624t-1146e115df2d24c6b0de2e77cc71c98f693df88a6355341b894157aad946cd953</cites><orcidid>0000-0003-3862-7231 ; 0000-0002-0907-8643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448979/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448979/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30908478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baniecki, Mary Lynn</creatorcontrib><creatorcontrib>Moon, Jade</creatorcontrib><creatorcontrib>Sani, Kian</creatorcontrib><creatorcontrib>Lemieux, Jacob E</creatorcontrib><creatorcontrib>Schaffner, Stephen F</creatorcontrib><creatorcontrib>Sabeti, Pardis C</creatorcontrib><title>Development of a SNP barcode to genotype Babesia microti infections</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B. microti, we developed a single nucleotide polymorphism (SNP)-based high resolution melt (HRM) surveillance tool. We developed our HRM assay using available sequence data and identified 775 SNPs. From these candidate SNPs, we developed a 32-SNP barcode that is robust and differentiates geographically distinct populations; it contains SNPs that are putatively neutral, located in nuclear, mitochondrial, and apicoplastal regions. The assays are reproducible and robust, requiring a small quantity of DNA (limit of detection as low as 10 pg.). We analyzed the performance of our HRM assay using 26 B. microti clinical samples used in our WGS study from babesiosis endemic regions in the United States. We identified a minimal barcode consisting of 25 SNPs that differentiate geographically distinct populations across all clinical samples evaluated (average minor allele frequency &gt; 0.22). Supporting our previous WGS findings, our 25-SNP barcode identified distinct barcode signatures that segregate B. microti into two lineages: Northeast and Midwest, with the Northeast having three subpopulations: Connecticut/Rhode Island, Nantucket, and the R1 reference group. Our 25-SNP HRM barcode provides a robust means genetic marker set that will aid in tracking the increasing incidence and expanding geographic range of B. microti infections.</description><subject>Arachnids</subject><subject>Assaying</subject><subject>Babesia microti</subject><subject>Babesiosis</subject><subject>Bar codes</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>DNA</subject><subject>Evolutionary biology</subject><subject>Gene frequency</subject><subject>Gene polymorphism</subject><subject>Genetic aspects</subject><subject>Genetic markers</subject><subject>Genetic polymorphisms</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Health risks</subject><subject>Hospitals</subject><subject>Identification</subject><subject>Identification and classification</subject><subject>Infections</subject><subject>Innovations</subject><subject>Malaria</subject><subject>Medical laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Mitochondria</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Parasitic diseases</subject><subject>Pathogens</subject><subject>People and places</subject><subject>Polymorphism</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Public health</subject><subject>Regions</subject><subject>Research and Analysis Methods</subject><subject>Robustness</subject><subject>Samples</subject><subject>Sentinel surveillance</subject><subject>Sequencing</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Subpopulations</subject><subject>Surveillance</subject><subject>Tick-borne diseases</subject><subject>Tropical diseases</subject><subject>Zoonoses</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUl2L1DAULaK46-o_EC0I4suM-WySF2EdvxYWFdTnkCa3MxnSpjbtwv57MzPdZUaWPCTcnHvuveeeoniJ0RJTgd9v4zR0Jiz7bnRLhJDAij0qzrGifEEE5Y-P3mfFs5S2CHHFJX5anFGkkGRCnherT3ADIfYtdGMZm9KUv77_LGsz2OigHGO5hi6Otz2UH00NyZuy9XaIoy9914AdfezS8-JJY0KCF_N9Ufz58vn36tvi-sfXq9Xl9cJWhI0LjFkFGHPXEEeYrWrkgIAQ1gpslWwqRV0jpako55ThWiqGuTDGKVZZpzi9KF4fePsQk57nT5oQTigmBKGMuDogXDRb3Q--NcOtjsbrfSAOa22G0dsAWomKVALXRAJmppZ1I7jjAgkHWNaWZa4Pc7WpbsHZLNBgwgnp6U_nN3odb3TFmFRCZYJ3M8EQ_06QRt36ZCEE00Gcct9YCSkl4jhD3_wHfXi6GbU2eYCsf8x17Y5UX-a9Uk7JvuzyAVQ-DvLqYgeNz_GThLdHCRswYdykGKb9bk-B7ADMBkhpgOZeDIz0zpN3XeudJ_XsyZz26ljI-6Q7E9J_FzXbxQ</recordid><startdate>20190325</startdate><enddate>20190325</enddate><creator>Baniecki, Mary Lynn</creator><creator>Moon, Jade</creator><creator>Sani, Kian</creator><creator>Lemieux, Jacob E</creator><creator>Schaffner, Stephen F</creator><creator>Sabeti, Pardis C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3862-7231</orcidid><orcidid>https://orcid.org/0000-0002-0907-8643</orcidid></search><sort><creationdate>20190325</creationdate><title>Development of a SNP barcode to genotype Babesia microti infections</title><author>Baniecki, Mary Lynn ; Moon, Jade ; Sani, Kian ; Lemieux, Jacob E ; Schaffner, Stephen F ; Sabeti, Pardis C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-1146e115df2d24c6b0de2e77cc71c98f693df88a6355341b894157aad946cd953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arachnids</topic><topic>Assaying</topic><topic>Babesia microti</topic><topic>Babesiosis</topic><topic>Bar codes</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>DNA</topic><topic>Evolutionary biology</topic><topic>Gene frequency</topic><topic>Gene polymorphism</topic><topic>Genetic aspects</topic><topic>Genetic markers</topic><topic>Genetic polymorphisms</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Health risks</topic><topic>Hospitals</topic><topic>Identification</topic><topic>Identification and classification</topic><topic>Infections</topic><topic>Innovations</topic><topic>Malaria</topic><topic>Medical laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Mitochondria</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Parasitic diseases</topic><topic>Pathogens</topic><topic>People and places</topic><topic>Polymorphism</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Public health</topic><topic>Regions</topic><topic>Research and Analysis Methods</topic><topic>Robustness</topic><topic>Samples</topic><topic>Sentinel surveillance</topic><topic>Sequencing</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Subpopulations</topic><topic>Surveillance</topic><topic>Tick-borne diseases</topic><topic>Tropical diseases</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baniecki, Mary Lynn</creatorcontrib><creatorcontrib>Moon, Jade</creatorcontrib><creatorcontrib>Sani, Kian</creatorcontrib><creatorcontrib>Lemieux, Jacob E</creatorcontrib><creatorcontrib>Schaffner, Stephen F</creatorcontrib><creatorcontrib>Sabeti, Pardis C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baniecki, Mary Lynn</au><au>Moon, Jade</au><au>Sani, Kian</au><au>Lemieux, Jacob E</au><au>Schaffner, Stephen F</au><au>Sabeti, Pardis C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a SNP barcode to genotype Babesia microti infections</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2019-03-25</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>e0007194</spage><epage>e0007194</epage><pages>e0007194-e0007194</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B. microti, we developed a single nucleotide polymorphism (SNP)-based high resolution melt (HRM) surveillance tool. We developed our HRM assay using available sequence data and identified 775 SNPs. From these candidate SNPs, we developed a 32-SNP barcode that is robust and differentiates geographically distinct populations; it contains SNPs that are putatively neutral, located in nuclear, mitochondrial, and apicoplastal regions. The assays are reproducible and robust, requiring a small quantity of DNA (limit of detection as low as 10 pg.). We analyzed the performance of our HRM assay using 26 B. microti clinical samples used in our WGS study from babesiosis endemic regions in the United States. We identified a minimal barcode consisting of 25 SNPs that differentiate geographically distinct populations across all clinical samples evaluated (average minor allele frequency &gt; 0.22). Supporting our previous WGS findings, our 25-SNP barcode identified distinct barcode signatures that segregate B. microti into two lineages: Northeast and Midwest, with the Northeast having three subpopulations: Connecticut/Rhode Island, Nantucket, and the R1 reference group. Our 25-SNP HRM barcode provides a robust means genetic marker set that will aid in tracking the increasing incidence and expanding geographic range of B. microti infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30908478</pmid><doi>10.1371/journal.pntd.0007194</doi><orcidid>https://orcid.org/0000-0003-3862-7231</orcidid><orcidid>https://orcid.org/0000-0002-0907-8643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2019-03, Vol.13 (3), p.e0007194-e0007194
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_2252312200
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Arachnids
Assaying
Babesia microti
Babesiosis
Bar codes
Biology and Life Sciences
Chromosomes
Deoxyribonucleic acid
Detection
Diagnosis
Disease
DNA
Evolutionary biology
Gene frequency
Gene polymorphism
Genetic aspects
Genetic markers
Genetic polymorphisms
Genetic testing
Genomes
Genomics
Genotypes
Health risks
Hospitals
Identification
Identification and classification
Infections
Innovations
Malaria
Medical laboratories
Medicine and Health Sciences
Mitochondria
Nucleotide sequence
Nucleotides
Parasitic diseases
Pathogens
People and places
Polymorphism
Population genetics
Populations
Public health
Regions
Research and Analysis Methods
Robustness
Samples
Sentinel surveillance
Sequencing
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Subpopulations
Surveillance
Tick-borne diseases
Tropical diseases
Zoonoses
title Development of a SNP barcode to genotype Babesia microti infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20SNP%20barcode%20to%20genotype%20Babesia%20microti%20infections&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Baniecki,%20Mary%20Lynn&rft.date=2019-03-25&rft.volume=13&rft.issue=3&rft.spage=e0007194&rft.epage=e0007194&rft.pages=e0007194-e0007194&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0007194&rft_dat=%3Cgale_plos_%3EA581353279%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252312200&rft_id=info:pmid/30908478&rft_galeid=A581353279&rft_doaj_id=oai_doaj_org_article_9762671b28e14ab8bf75d5707de18bc4&rfr_iscdi=true