Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever

Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2018-08, Vol.12 (8), p.e0006737-e0006737
1. Verfasser: Ak, dem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0006737
container_issue 8
container_start_page e0006737
container_title PLoS neglected tropical diseases
container_volume 12
creator Ak, dem
description Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers.
doi_str_mv 10.1371/journal.pntd.0006737
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2252294461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557887074</galeid><doaj_id>oai_doaj_org_article_2f4ae8220edc45dda08adcab3d93a6c3</doaj_id><sourcerecordid>A557887074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-5e8923f136c80e9a4ad84275714510ad85229edd8862548804eaf54b5202a56a3</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwBggiISEuu9iOnTgXpGoFpVIlDsDZmrUniVdZO9hJEW_AY-N002oXVT7Ennz_7_HMZNlrSta0qOjHnZ-Cg349uNGsCSFlVVRPsnNaF2LFqkI8PdqfZS9i3BEiaiHp8-ysIJRKXlfn2d_vA4zWj7gffIA-HwIaq1PE5b7JrWtwPkwxNzYiRIz5FK1r8ziGSY9TovMrmGK04JLWa4wz89uOXQ7D0FsNd16jzzfB7hHcauNd6_MO9z6EDlqr8wZvMbzMnjXQR3y1fC-yn18-_9h8Xd18u7reXN6sdMn4uBIoa1Y0tCi1JFgDByM5q0RFuaAkHQRjNRojZckEl5JwhEbwrWCEgSihuMjeHnyH3ke1FDEqxmYh5yVNxPWBMB52akhpQ_ijPFh1F_ChVRBGq3tUrOGAkjGCRnNhDBAJRsO2MHUBpS6S16fltmm7TxC6MVX5xPT0j7Odav2tKinlNa2SwYfFIPhfE8ZR7W3U2PfgMLVFMSJrWRJWzXm_-w99_HUL1UJ6QGqwT_fq2VRdClFJWZGKJ2r9CJWWwb3V3mFjU_xE8P5I0CH0Yxd9P83dj6cgP4A6-BgDNg_FoETNg32ftZoHWy2DnWRvjgv5ILqf5OIflL34Cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252294461</pqid></control><display><type>article</type><title>Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Ak, dem</creator><creatorcontrib>Ak, dem</creatorcontrib><description>Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0006737</identifier><identifier>PMID: 30118497</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Computation ; Computer and Information Sciences ; Computer applications ; Computer Simulation ; Crimean hemorrhagic fever ; Datasets ; Decision trees ; Disease control ; Fever ; Frameworks ; Gaussian process ; Gaussian processes ; Health care ; Health policy ; Hemorrhage ; Hemorrhagic Fever, Crimean - transmission ; Humans ; Infectious diseases ; Influenza ; Information processing ; International conferences ; Kalman filters ; Learning algorithms ; Machine learning ; Medicine and health sciences ; Models, Biological ; Normal Distribution ; People and Places ; Physical Sciences ; Policies ; Public health ; Regression analysis ; Research and Analysis Methods ; Software ; Surveillance ; Tropical diseases ; Vectors (Biology)</subject><ispartof>PLoS neglected tropical diseases, 2018-08, Vol.12 (8), p.e0006737-e0006737</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Ak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Ak et al 2018 Ak et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-5e8923f136c80e9a4ad84275714510ad85229edd8862548804eaf54b5202a56a3</citedby><cites>FETCH-LOGICAL-c624t-5e8923f136c80e9a4ad84275714510ad85229edd8862548804eaf54b5202a56a3</cites><orcidid>0000-0002-2483-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ak, dem</creatorcontrib><title>Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Crimean hemorrhagic fever</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Disease control</subject><subject>Fever</subject><subject>Frameworks</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Health care</subject><subject>Health policy</subject><subject>Hemorrhage</subject><subject>Hemorrhagic Fever, Crimean - transmission</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Information processing</subject><subject>International conferences</subject><subject>Kalman filters</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine and health sciences</subject><subject>Models, Biological</subject><subject>Normal Distribution</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Policies</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Surveillance</subject><subject>Tropical diseases</subject><subject>Vectors (Biology)</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwBggiISEuu9iOnTgXpGoFpVIlDsDZmrUniVdZO9hJEW_AY-N002oXVT7Ennz_7_HMZNlrSta0qOjHnZ-Cg349uNGsCSFlVVRPsnNaF2LFqkI8PdqfZS9i3BEiaiHp8-ysIJRKXlfn2d_vA4zWj7gffIA-HwIaq1PE5b7JrWtwPkwxNzYiRIz5FK1r8ziGSY9TovMrmGK04JLWa4wz89uOXQ7D0FsNd16jzzfB7hHcauNd6_MO9z6EDlqr8wZvMbzMnjXQR3y1fC-yn18-_9h8Xd18u7reXN6sdMn4uBIoa1Y0tCi1JFgDByM5q0RFuaAkHQRjNRojZckEl5JwhEbwrWCEgSihuMjeHnyH3ke1FDEqxmYh5yVNxPWBMB52akhpQ_ijPFh1F_ChVRBGq3tUrOGAkjGCRnNhDBAJRsO2MHUBpS6S16fltmm7TxC6MVX5xPT0j7Odav2tKinlNa2SwYfFIPhfE8ZR7W3U2PfgMLVFMSJrWRJWzXm_-w99_HUL1UJ6QGqwT_fq2VRdClFJWZGKJ2r9CJWWwb3V3mFjU_xE8P5I0CH0Yxd9P83dj6cgP4A6-BgDNg_FoETNg32ftZoHWy2DnWRvjgv5ILqf5OIflL34Cw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Ak, dem</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2483-075X</orcidid></search><sort><creationdate>20180801</creationdate><title>Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever</title><author>Ak, dem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-5e8923f136c80e9a4ad84275714510ad85229edd8862548804eaf54b5202a56a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Crimean hemorrhagic fever</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Disease control</topic><topic>Fever</topic><topic>Frameworks</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Health care</topic><topic>Health policy</topic><topic>Hemorrhage</topic><topic>Hemorrhagic Fever, Crimean - transmission</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Information processing</topic><topic>International conferences</topic><topic>Kalman filters</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine and health sciences</topic><topic>Models, Biological</topic><topic>Normal Distribution</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Policies</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Surveillance</topic><topic>Tropical diseases</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ak, dem</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ak, dem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>e0006737</spage><epage>e0006737</epage><pages>e0006737-e0006737</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30118497</pmid><doi>10.1371/journal.pntd.0006737</doi><orcidid>https://orcid.org/0000-0002-2483-075X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2018-08, Vol.12 (8), p.e0006737-e0006737
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_2252294461
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Algorithms
Artificial intelligence
Computation
Computer and Information Sciences
Computer applications
Computer Simulation
Crimean hemorrhagic fever
Datasets
Decision trees
Disease control
Fever
Frameworks
Gaussian process
Gaussian processes
Health care
Health policy
Hemorrhage
Hemorrhagic Fever, Crimean - transmission
Humans
Infectious diseases
Influenza
Information processing
International conferences
Kalman filters
Learning algorithms
Machine learning
Medicine and health sciences
Models, Biological
Normal Distribution
People and Places
Physical Sciences
Policies
Public health
Regression analysis
Research and Analysis Methods
Software
Surveillance
Tropical diseases
Vectors (Biology)
title Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20prediction%20of%20infectious%20diseases%20using%20structured%20Gaussian%20processes%20with%20application%20to%20Crimean-Congo%20hemorrhagic%20fever&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Ak,%20dem&rft.date=2018-08-01&rft.volume=12&rft.issue=8&rft.spage=e0006737&rft.epage=e0006737&rft.pages=e0006737-e0006737&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0006737&rft_dat=%3Cgale_plos_%3EA557887074%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252294461&rft_id=info:pmid/30118497&rft_galeid=A557887074&rft_doaj_id=oai_doaj_org_article_2f4ae8220edc45dda08adcab3d93a6c3&rfr_iscdi=true