Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys

The prevalence of diabetes is increasing rapidly in low- and middle-income countries (LMICs), urgently requiring detailed evidence to guide the response of health systems to this epidemic. In an effort to understand at what step in the diabetes care continuum individuals are lost to care, and how th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS medicine 2019-03, Vol.16 (3), p.e1002751
Hauptverfasser: Manne-Goehler, Jennifer, Geldsetzer, Pascal, Agoudavi, Kokou, Andall-Brereton, Glennis, Aryal, Krishna K, Bicaba, Brice Wilfried, Bovet, Pascal, Brian, Garry, Dorobantu, Maria, Gathecha, Gladwell, Singh Gurung, Mongal, Guwatudde, David, Msaidie, Mohamed, Houehanou, Corine, Houinato, Dismand, Jorgensen, Jutta Mari Adelin, Kagaruki, Gibson B, Karki, Khem B, Labadarios, Demetre, Martins, Joao S, Mayige, Mary T, McClure, Roy Wong, Mwalim, Omar, Mwangi, Joseph Kibachio, Norov, Bolormaa, Quesnel-Crooks, Sarah, Silver, Bahendeka K, Sturua, Lela, Tsabedze, Lindiwe, Wesseh, Chea Stanford, Stokes, Andrew, Marcus, Maja, Ebert, Cara, Davies, Justine I, Vollmer, Sebastian, Atun, Rifat, Bärnighausen, Till W, Jaacks, Lindsay M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e1002751
container_title PLoS medicine
container_volume 16
creator Manne-Goehler, Jennifer
Geldsetzer, Pascal
Agoudavi, Kokou
Andall-Brereton, Glennis
Aryal, Krishna K
Bicaba, Brice Wilfried
Bovet, Pascal
Brian, Garry
Dorobantu, Maria
Gathecha, Gladwell
Singh Gurung, Mongal
Guwatudde, David
Msaidie, Mohamed
Houehanou, Corine
Houinato, Dismand
Jorgensen, Jutta Mari Adelin
Kagaruki, Gibson B
Karki, Khem B
Labadarios, Demetre
Martins, Joao S
Mayige, Mary T
McClure, Roy Wong
Mwalim, Omar
Mwangi, Joseph Kibachio
Norov, Bolormaa
Quesnel-Crooks, Sarah
Silver, Bahendeka K
Sturua, Lela
Tsabedze, Lindiwe
Wesseh, Chea Stanford
Stokes, Andrew
Marcus, Maja
Ebert, Cara
Davies, Justine I
Vollmer, Sebastian
Atun, Rifat
Bärnighausen, Till W
Jaacks, Lindsay M
description The prevalence of diabetes is increasing rapidly in low- and middle-income countries (LMICs), urgently requiring detailed evidence to guide the response of health systems to this epidemic. In an effort to understand at what step in the diabetes care continuum individuals are lost to care, and how this varies between countries and population groups, this study examined health system performance for diabetes among adults in 28 LMICs using a cascade of care approach. We pooled individual participant data from nationally representative surveys done between 2008 and 2016 in 28 LMICs. Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl), random plasma glucose ≥ 11.1 mmol/l (200 mg/dl), HbA1c ≥ 6.5%, or reporting to be taking medication for diabetes. Stages of the care cascade were as follows: tested, diagnosed, lifestyle advice and/or medication given ("treated"), and controlled (HbA1c < 8.0% or equivalent). We stratified cascades of care by country, geographic region, World Bank income group, and individual-level characteristics (age, sex, educational attainment, household wealth quintile, and body mass index [BMI]). We then used logistic regression models with country-level fixed effects to evaluate predictors of (1) testing, (2) treatment, and (3) control. The final sample included 847,413 adults in 28 LMICs (8 low income, 9 lower-middle income, 11 upper-middle income). Survey sample size ranged from 824 in Guyana to 750,451 in India. The prevalence of diabetes was 8.8% (95% CI: 8.2%-9.5%), and the prevalence of undiagnosed diabetes was 4.8% (95% CI: 4.5%-5.2%). Health system performance for management of diabetes showed large losses to care at the stage of being tested, and low rates of diabetes control. Total unmet need for diabetes care (defined as the sum of those not tested, tested but undiagnosed, diagnosed but untreated, and treated but with diabetes not controlled) was 77.0% (95% CI: 74.9%-78.9%). Performance along the care cascade was significantly better in upper-middle income countries, but across all World Bank income groups, only half of participants with diabetes who were tested achieved diabetes control. Greater age, educational attainment, and BMI were associated with higher odds of being tested, being treated, and achieving control. The limitations of this study included the use of a single glucose measurement to assess diabetes, differences in the approach to wealth measurement across surveys, and variation in the date of
doi_str_mv 10.1371/journal.pmed.1002751
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2252265650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581098053</galeid><doaj_id>oai_doaj_org_article_13e59b43bf7049e7b8754826f27aab98</doaj_id><sourcerecordid>A581098053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779t-75db87f50324aa617726a85837fb516d49a3fcebbefbffb4d36659ab912734863</originalsourceid><addsrcrecordid>eNqVk1tv0zAUxyMEYmPwDRBYQkLsIcWXxI55QKomYJMmJnF7tZzkuPXkxJ2ddPST8HVx125apz6A8hDn5Hf-5-aTZS8JnhAmyPtLP4Zeu8mig3ZCMKaiJI-yQ1IWMidc8Mf3zgfZsxgvEyOxxE-zA4YrShmTh9mfU9BumKO4igN0aAHB-NDpvgGUDunbLxyga5uQ1uoaBojI9ohWyPnrHOm-RZ1tWwe57RvfAWr82A_BQvyApqgJPsY8QjNYn3JFcRjbFfIG9XpjcSsUYBEgQj8k0xJQHMMSVvF59sRoF-HF9n2U_fz86cfJaX5-8eXsZHqeN0LIIRdlW1fClJjRQmtOhKBcV2XFhKlLwttCamYaqGswtTF10TLOS6lrSahgRcXZUfZ6o7twPqptT6OitKSUlzwJH2VnG6L1-lItgu10WCmvrbox-DBTOgy2caAIg1LWBauNwIUEkVIri4pyQ4VOMauk9XEbbazT2JpUddBuR3T3T2_nauaXijPJJSZJ4HgjMH_gdjo9V2sbppjjNN7lmn23DRb81QhxUJ2NDTine_BjqpGk9CgjjCb0zQN0fye21EynYm1vfMqxWYuqaVkRLCtcskTle6gZ9JAK8j0Ym8w7_GQPn54WOtvsdTjecUjMAL-HmR5jVGffv_0H-_Xf2Ytfu-zbe-z8Zoeid-P6VsddsNiAN6sQwNxNjWC13uPbTqv1HqvtHie3V_cvyp3T7eKyv_fIQjk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252265650</pqid></control><display><type>article</type><title>Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Manne-Goehler, Jennifer ; Geldsetzer, Pascal ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Bovet, Pascal ; Brian, Garry ; Dorobantu, Maria ; Gathecha, Gladwell ; Singh Gurung, Mongal ; Guwatudde, David ; Msaidie, Mohamed ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta Mari Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwalim, Omar ; Mwangi, Joseph Kibachio ; Norov, Bolormaa ; Quesnel-Crooks, Sarah ; Silver, Bahendeka K ; Sturua, Lela ; Tsabedze, Lindiwe ; Wesseh, Chea Stanford ; Stokes, Andrew ; Marcus, Maja ; Ebert, Cara ; Davies, Justine I ; Vollmer, Sebastian ; Atun, Rifat ; Bärnighausen, Till W ; Jaacks, Lindsay M</creator><contributor>Wareham, Nicholas J.</contributor><creatorcontrib>Manne-Goehler, Jennifer ; Geldsetzer, Pascal ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Bovet, Pascal ; Brian, Garry ; Dorobantu, Maria ; Gathecha, Gladwell ; Singh Gurung, Mongal ; Guwatudde, David ; Msaidie, Mohamed ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta Mari Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwalim, Omar ; Mwangi, Joseph Kibachio ; Norov, Bolormaa ; Quesnel-Crooks, Sarah ; Silver, Bahendeka K ; Sturua, Lela ; Tsabedze, Lindiwe ; Wesseh, Chea Stanford ; Stokes, Andrew ; Marcus, Maja ; Ebert, Cara ; Davies, Justine I ; Vollmer, Sebastian ; Atun, Rifat ; Bärnighausen, Till W ; Jaacks, Lindsay M ; Wareham, Nicholas J.</creatorcontrib><description>The prevalence of diabetes is increasing rapidly in low- and middle-income countries (LMICs), urgently requiring detailed evidence to guide the response of health systems to this epidemic. In an effort to understand at what step in the diabetes care continuum individuals are lost to care, and how this varies between countries and population groups, this study examined health system performance for diabetes among adults in 28 LMICs using a cascade of care approach. We pooled individual participant data from nationally representative surveys done between 2008 and 2016 in 28 LMICs. Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl), random plasma glucose ≥ 11.1 mmol/l (200 mg/dl), HbA1c ≥ 6.5%, or reporting to be taking medication for diabetes. Stages of the care cascade were as follows: tested, diagnosed, lifestyle advice and/or medication given ("treated"), and controlled (HbA1c &lt; 8.0% or equivalent). We stratified cascades of care by country, geographic region, World Bank income group, and individual-level characteristics (age, sex, educational attainment, household wealth quintile, and body mass index [BMI]). We then used logistic regression models with country-level fixed effects to evaluate predictors of (1) testing, (2) treatment, and (3) control. The final sample included 847,413 adults in 28 LMICs (8 low income, 9 lower-middle income, 11 upper-middle income). Survey sample size ranged from 824 in Guyana to 750,451 in India. The prevalence of diabetes was 8.8% (95% CI: 8.2%-9.5%), and the prevalence of undiagnosed diabetes was 4.8% (95% CI: 4.5%-5.2%). Health system performance for management of diabetes showed large losses to care at the stage of being tested, and low rates of diabetes control. Total unmet need for diabetes care (defined as the sum of those not tested, tested but undiagnosed, diagnosed but untreated, and treated but with diabetes not controlled) was 77.0% (95% CI: 74.9%-78.9%). Performance along the care cascade was significantly better in upper-middle income countries, but across all World Bank income groups, only half of participants with diabetes who were tested achieved diabetes control. Greater age, educational attainment, and BMI were associated with higher odds of being tested, being treated, and achieving control. The limitations of this study included the use of a single glucose measurement to assess diabetes, differences in the approach to wealth measurement across surveys, and variation in the date of the surveys. The study uncovered poor management of diabetes along the care cascade, indicating large unmet need for diabetes care across 28 LMICs. Performance across the care cascade varied by World Bank income group and individual-level characteristics, particularly age, educational attainment, and BMI. This policy-relevant analysis can inform country-specific interventions and offers a baseline by which future progress can be measured.</description><identifier>ISSN: 1549-1676</identifier><identifier>ISSN: 1549-1277</identifier><identifier>EISSN: 1549-1676</identifier><identifier>DOI: 10.1371/journal.pmed.1002751</identifier><identifier>PMID: 30822339</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Age ; Biology and Life Sciences ; Body mass ; Body mass index ; Cascade control ; Cross-Sectional Studies ; Delivery of Health Care - economics ; Delivery of Health Care - trends ; Developing countries ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus - economics ; Diabetes Mellitus - epidemiology ; Diabetes Mellitus - therapy ; Diabetes therapy ; Diabetics ; Epidemics ; Epidemiology ; Evidence-based medicine ; Fasting ; Female ; Glucose ; Glycosylated hemoglobin ; Health care ; Health care industry ; Health sciences ; Health Services Needs and Demand - economics ; Health Services Needs and Demand - trends ; Health surveillance ; Health surveys ; Health Surveys - economics ; Health Surveys - trends ; Hospitals ; Humans ; Income - trends ; International aspects ; Laboratories ; Life Sciences ; Low income groups ; Male ; Medical care quality ; Medical research ; Medicine and Health Sciences ; Middle Aged ; Personal income ; Polls &amp; surveys ; Population ; Population studies ; Poverty - economics ; Poverty - trends ; Preventive medicine ; Public health ; Regression analysis ; Research and Analysis Methods ; Santé publique et épidémiologie ; Social Sciences ; Surveys ; Systematic review ; Young Adult</subject><ispartof>PLoS medicine, 2019-03, Vol.16 (3), p.e1002751</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Manne-Goehler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Manne-Goehler et al 2019 Manne-Goehler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c779t-75db87f50324aa617726a85837fb516d49a3fcebbefbffb4d36659ab912734863</citedby><cites>FETCH-LOGICAL-c779t-75db87f50324aa617726a85837fb516d49a3fcebbefbffb4d36659ab912734863</cites><orcidid>0000-0002-1531-5983 ; 0000-0002-0242-4259 ; 0000-0001-8080-7872 ; 0000-0001-9295-0035 ; 0000-0002-1054-8104 ; 0000-0003-0622-6695 ; 0000-0002-7791-5167 ; 0000-0003-4904-2087 ; 0000-0001-8074-9393 ; 0000-0003-0801-0775 ; 0000-0002-8502-3636 ; 0000-0001-6481-6242 ; 0000-0002-8878-5505 ; 0000-0001-6834-1838 ; 0000-0002-4182-4212 ; 0000-0002-4232-1625 ; 0000-0003-4861-7870 ; 0000-0003-1940-5262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396901/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396901/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30822339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://unilim.hal.science/hal-02060308$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Wareham, Nicholas J.</contributor><creatorcontrib>Manne-Goehler, Jennifer</creatorcontrib><creatorcontrib>Geldsetzer, Pascal</creatorcontrib><creatorcontrib>Agoudavi, Kokou</creatorcontrib><creatorcontrib>Andall-Brereton, Glennis</creatorcontrib><creatorcontrib>Aryal, Krishna K</creatorcontrib><creatorcontrib>Bicaba, Brice Wilfried</creatorcontrib><creatorcontrib>Bovet, Pascal</creatorcontrib><creatorcontrib>Brian, Garry</creatorcontrib><creatorcontrib>Dorobantu, Maria</creatorcontrib><creatorcontrib>Gathecha, Gladwell</creatorcontrib><creatorcontrib>Singh Gurung, Mongal</creatorcontrib><creatorcontrib>Guwatudde, David</creatorcontrib><creatorcontrib>Msaidie, Mohamed</creatorcontrib><creatorcontrib>Houehanou, Corine</creatorcontrib><creatorcontrib>Houinato, Dismand</creatorcontrib><creatorcontrib>Jorgensen, Jutta Mari Adelin</creatorcontrib><creatorcontrib>Kagaruki, Gibson B</creatorcontrib><creatorcontrib>Karki, Khem B</creatorcontrib><creatorcontrib>Labadarios, Demetre</creatorcontrib><creatorcontrib>Martins, Joao S</creatorcontrib><creatorcontrib>Mayige, Mary T</creatorcontrib><creatorcontrib>McClure, Roy Wong</creatorcontrib><creatorcontrib>Mwalim, Omar</creatorcontrib><creatorcontrib>Mwangi, Joseph Kibachio</creatorcontrib><creatorcontrib>Norov, Bolormaa</creatorcontrib><creatorcontrib>Quesnel-Crooks, Sarah</creatorcontrib><creatorcontrib>Silver, Bahendeka K</creatorcontrib><creatorcontrib>Sturua, Lela</creatorcontrib><creatorcontrib>Tsabedze, Lindiwe</creatorcontrib><creatorcontrib>Wesseh, Chea Stanford</creatorcontrib><creatorcontrib>Stokes, Andrew</creatorcontrib><creatorcontrib>Marcus, Maja</creatorcontrib><creatorcontrib>Ebert, Cara</creatorcontrib><creatorcontrib>Davies, Justine I</creatorcontrib><creatorcontrib>Vollmer, Sebastian</creatorcontrib><creatorcontrib>Atun, Rifat</creatorcontrib><creatorcontrib>Bärnighausen, Till W</creatorcontrib><creatorcontrib>Jaacks, Lindsay M</creatorcontrib><title>Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys</title><title>PLoS medicine</title><addtitle>PLoS Med</addtitle><description>The prevalence of diabetes is increasing rapidly in low- and middle-income countries (LMICs), urgently requiring detailed evidence to guide the response of health systems to this epidemic. In an effort to understand at what step in the diabetes care continuum individuals are lost to care, and how this varies between countries and population groups, this study examined health system performance for diabetes among adults in 28 LMICs using a cascade of care approach. We pooled individual participant data from nationally representative surveys done between 2008 and 2016 in 28 LMICs. Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl), random plasma glucose ≥ 11.1 mmol/l (200 mg/dl), HbA1c ≥ 6.5%, or reporting to be taking medication for diabetes. Stages of the care cascade were as follows: tested, diagnosed, lifestyle advice and/or medication given ("treated"), and controlled (HbA1c &lt; 8.0% or equivalent). We stratified cascades of care by country, geographic region, World Bank income group, and individual-level characteristics (age, sex, educational attainment, household wealth quintile, and body mass index [BMI]). We then used logistic regression models with country-level fixed effects to evaluate predictors of (1) testing, (2) treatment, and (3) control. The final sample included 847,413 adults in 28 LMICs (8 low income, 9 lower-middle income, 11 upper-middle income). Survey sample size ranged from 824 in Guyana to 750,451 in India. The prevalence of diabetes was 8.8% (95% CI: 8.2%-9.5%), and the prevalence of undiagnosed diabetes was 4.8% (95% CI: 4.5%-5.2%). Health system performance for management of diabetes showed large losses to care at the stage of being tested, and low rates of diabetes control. Total unmet need for diabetes care (defined as the sum of those not tested, tested but undiagnosed, diagnosed but untreated, and treated but with diabetes not controlled) was 77.0% (95% CI: 74.9%-78.9%). Performance along the care cascade was significantly better in upper-middle income countries, but across all World Bank income groups, only half of participants with diabetes who were tested achieved diabetes control. Greater age, educational attainment, and BMI were associated with higher odds of being tested, being treated, and achieving control. The limitations of this study included the use of a single glucose measurement to assess diabetes, differences in the approach to wealth measurement across surveys, and variation in the date of the surveys. The study uncovered poor management of diabetes along the care cascade, indicating large unmet need for diabetes care across 28 LMICs. Performance across the care cascade varied by World Bank income group and individual-level characteristics, particularly age, educational attainment, and BMI. This policy-relevant analysis can inform country-specific interventions and offers a baseline by which future progress can be measured.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Biology and Life Sciences</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Cascade control</subject><subject>Cross-Sectional Studies</subject><subject>Delivery of Health Care - economics</subject><subject>Delivery of Health Care - trends</subject><subject>Developing countries</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - economics</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Diabetes Mellitus - therapy</subject><subject>Diabetes therapy</subject><subject>Diabetics</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Evidence-based medicine</subject><subject>Fasting</subject><subject>Female</subject><subject>Glucose</subject><subject>Glycosylated hemoglobin</subject><subject>Health care</subject><subject>Health care industry</subject><subject>Health sciences</subject><subject>Health Services Needs and Demand - economics</subject><subject>Health Services Needs and Demand - trends</subject><subject>Health surveillance</subject><subject>Health surveys</subject><subject>Health Surveys - economics</subject><subject>Health Surveys - trends</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Income - trends</subject><subject>International aspects</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Low income groups</subject><subject>Male</subject><subject>Medical care quality</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Personal income</subject><subject>Polls &amp; surveys</subject><subject>Population</subject><subject>Population studies</subject><subject>Poverty - economics</subject><subject>Poverty - trends</subject><subject>Preventive medicine</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Santé publique et épidémiologie</subject><subject>Social Sciences</subject><subject>Surveys</subject><subject>Systematic review</subject><subject>Young Adult</subject><issn>1549-1676</issn><issn>1549-1277</issn><issn>1549-1676</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1tv0zAUxyMEYmPwDRBYQkLsIcWXxI55QKomYJMmJnF7tZzkuPXkxJ2ddPST8HVx125apz6A8hDn5Hf-5-aTZS8JnhAmyPtLP4Zeu8mig3ZCMKaiJI-yQ1IWMidc8Mf3zgfZsxgvEyOxxE-zA4YrShmTh9mfU9BumKO4igN0aAHB-NDpvgGUDunbLxyga5uQ1uoaBojI9ohWyPnrHOm-RZ1tWwe57RvfAWr82A_BQvyApqgJPsY8QjNYn3JFcRjbFfIG9XpjcSsUYBEgQj8k0xJQHMMSVvF59sRoF-HF9n2U_fz86cfJaX5-8eXsZHqeN0LIIRdlW1fClJjRQmtOhKBcV2XFhKlLwttCamYaqGswtTF10TLOS6lrSahgRcXZUfZ6o7twPqptT6OitKSUlzwJH2VnG6L1-lItgu10WCmvrbox-DBTOgy2caAIg1LWBauNwIUEkVIri4pyQ4VOMauk9XEbbazT2JpUddBuR3T3T2_nauaXijPJJSZJ4HgjMH_gdjo9V2sbppjjNN7lmn23DRb81QhxUJ2NDTine_BjqpGk9CgjjCb0zQN0fye21EynYm1vfMqxWYuqaVkRLCtcskTle6gZ9JAK8j0Ym8w7_GQPn54WOtvsdTjecUjMAL-HmR5jVGffv_0H-_Xf2Ytfu-zbe-z8Zoeid-P6VsddsNiAN6sQwNxNjWC13uPbTqv1HqvtHie3V_cvyp3T7eKyv_fIQjk</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Manne-Goehler, Jennifer</creator><creator>Geldsetzer, Pascal</creator><creator>Agoudavi, Kokou</creator><creator>Andall-Brereton, Glennis</creator><creator>Aryal, Krishna K</creator><creator>Bicaba, Brice Wilfried</creator><creator>Bovet, Pascal</creator><creator>Brian, Garry</creator><creator>Dorobantu, Maria</creator><creator>Gathecha, Gladwell</creator><creator>Singh Gurung, Mongal</creator><creator>Guwatudde, David</creator><creator>Msaidie, Mohamed</creator><creator>Houehanou, Corine</creator><creator>Houinato, Dismand</creator><creator>Jorgensen, Jutta Mari Adelin</creator><creator>Kagaruki, Gibson B</creator><creator>Karki, Khem B</creator><creator>Labadarios, Demetre</creator><creator>Martins, Joao S</creator><creator>Mayige, Mary T</creator><creator>McClure, Roy Wong</creator><creator>Mwalim, Omar</creator><creator>Mwangi, Joseph Kibachio</creator><creator>Norov, Bolormaa</creator><creator>Quesnel-Crooks, Sarah</creator><creator>Silver, Bahendeka K</creator><creator>Sturua, Lela</creator><creator>Tsabedze, Lindiwe</creator><creator>Wesseh, Chea Stanford</creator><creator>Stokes, Andrew</creator><creator>Marcus, Maja</creator><creator>Ebert, Cara</creator><creator>Davies, Justine I</creator><creator>Vollmer, Sebastian</creator><creator>Atun, Rifat</creator><creator>Bärnighausen, Till W</creator><creator>Jaacks, Lindsay M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><scope>CZK</scope><orcidid>https://orcid.org/0000-0002-1531-5983</orcidid><orcidid>https://orcid.org/0000-0002-0242-4259</orcidid><orcidid>https://orcid.org/0000-0001-8080-7872</orcidid><orcidid>https://orcid.org/0000-0001-9295-0035</orcidid><orcidid>https://orcid.org/0000-0002-1054-8104</orcidid><orcidid>https://orcid.org/0000-0003-0622-6695</orcidid><orcidid>https://orcid.org/0000-0002-7791-5167</orcidid><orcidid>https://orcid.org/0000-0003-4904-2087</orcidid><orcidid>https://orcid.org/0000-0001-8074-9393</orcidid><orcidid>https://orcid.org/0000-0003-0801-0775</orcidid><orcidid>https://orcid.org/0000-0002-8502-3636</orcidid><orcidid>https://orcid.org/0000-0001-6481-6242</orcidid><orcidid>https://orcid.org/0000-0002-8878-5505</orcidid><orcidid>https://orcid.org/0000-0001-6834-1838</orcidid><orcidid>https://orcid.org/0000-0002-4182-4212</orcidid><orcidid>https://orcid.org/0000-0002-4232-1625</orcidid><orcidid>https://orcid.org/0000-0003-4861-7870</orcidid><orcidid>https://orcid.org/0000-0003-1940-5262</orcidid></search><sort><creationdate>201903</creationdate><title>Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys</title><author>Manne-Goehler, Jennifer ; Geldsetzer, Pascal ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Bovet, Pascal ; Brian, Garry ; Dorobantu, Maria ; Gathecha, Gladwell ; Singh Gurung, Mongal ; Guwatudde, David ; Msaidie, Mohamed ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta Mari Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwalim, Omar ; Mwangi, Joseph Kibachio ; Norov, Bolormaa ; Quesnel-Crooks, Sarah ; Silver, Bahendeka K ; Sturua, Lela ; Tsabedze, Lindiwe ; Wesseh, Chea Stanford ; Stokes, Andrew ; Marcus, Maja ; Ebert, Cara ; Davies, Justine I ; Vollmer, Sebastian ; Atun, Rifat ; Bärnighausen, Till W ; Jaacks, Lindsay M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779t-75db87f50324aa617726a85837fb516d49a3fcebbefbffb4d36659ab912734863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Biology and Life Sciences</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Cascade control</topic><topic>Cross-Sectional Studies</topic><topic>Delivery of Health Care - economics</topic><topic>Delivery of Health Care - trends</topic><topic>Developing countries</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - economics</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Diabetes Mellitus - therapy</topic><topic>Diabetes therapy</topic><topic>Diabetics</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Evidence-based medicine</topic><topic>Fasting</topic><topic>Female</topic><topic>Glucose</topic><topic>Glycosylated hemoglobin</topic><topic>Health care</topic><topic>Health care industry</topic><topic>Health sciences</topic><topic>Health Services Needs and Demand - economics</topic><topic>Health Services Needs and Demand - trends</topic><topic>Health surveillance</topic><topic>Health surveys</topic><topic>Health Surveys - economics</topic><topic>Health Surveys - trends</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Income - trends</topic><topic>International aspects</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Low income groups</topic><topic>Male</topic><topic>Medical care quality</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Personal income</topic><topic>Polls &amp; surveys</topic><topic>Population</topic><topic>Population studies</topic><topic>Poverty - economics</topic><topic>Poverty - trends</topic><topic>Preventive medicine</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Santé publique et épidémiologie</topic><topic>Social Sciences</topic><topic>Surveys</topic><topic>Systematic review</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manne-Goehler, Jennifer</creatorcontrib><creatorcontrib>Geldsetzer, Pascal</creatorcontrib><creatorcontrib>Agoudavi, Kokou</creatorcontrib><creatorcontrib>Andall-Brereton, Glennis</creatorcontrib><creatorcontrib>Aryal, Krishna K</creatorcontrib><creatorcontrib>Bicaba, Brice Wilfried</creatorcontrib><creatorcontrib>Bovet, Pascal</creatorcontrib><creatorcontrib>Brian, Garry</creatorcontrib><creatorcontrib>Dorobantu, Maria</creatorcontrib><creatorcontrib>Gathecha, Gladwell</creatorcontrib><creatorcontrib>Singh Gurung, Mongal</creatorcontrib><creatorcontrib>Guwatudde, David</creatorcontrib><creatorcontrib>Msaidie, Mohamed</creatorcontrib><creatorcontrib>Houehanou, Corine</creatorcontrib><creatorcontrib>Houinato, Dismand</creatorcontrib><creatorcontrib>Jorgensen, Jutta Mari Adelin</creatorcontrib><creatorcontrib>Kagaruki, Gibson B</creatorcontrib><creatorcontrib>Karki, Khem B</creatorcontrib><creatorcontrib>Labadarios, Demetre</creatorcontrib><creatorcontrib>Martins, Joao S</creatorcontrib><creatorcontrib>Mayige, Mary T</creatorcontrib><creatorcontrib>McClure, Roy Wong</creatorcontrib><creatorcontrib>Mwalim, Omar</creatorcontrib><creatorcontrib>Mwangi, Joseph Kibachio</creatorcontrib><creatorcontrib>Norov, Bolormaa</creatorcontrib><creatorcontrib>Quesnel-Crooks, Sarah</creatorcontrib><creatorcontrib>Silver, Bahendeka K</creatorcontrib><creatorcontrib>Sturua, Lela</creatorcontrib><creatorcontrib>Tsabedze, Lindiwe</creatorcontrib><creatorcontrib>Wesseh, Chea Stanford</creatorcontrib><creatorcontrib>Stokes, Andrew</creatorcontrib><creatorcontrib>Marcus, Maja</creatorcontrib><creatorcontrib>Ebert, Cara</creatorcontrib><creatorcontrib>Davies, Justine I</creatorcontrib><creatorcontrib>Vollmer, Sebastian</creatorcontrib><creatorcontrib>Atun, Rifat</creatorcontrib><creatorcontrib>Bärnighausen, Till W</creatorcontrib><creatorcontrib>Jaacks, Lindsay M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Medicine</collection><jtitle>PLoS medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manne-Goehler, Jennifer</au><au>Geldsetzer, Pascal</au><au>Agoudavi, Kokou</au><au>Andall-Brereton, Glennis</au><au>Aryal, Krishna K</au><au>Bicaba, Brice Wilfried</au><au>Bovet, Pascal</au><au>Brian, Garry</au><au>Dorobantu, Maria</au><au>Gathecha, Gladwell</au><au>Singh Gurung, Mongal</au><au>Guwatudde, David</au><au>Msaidie, Mohamed</au><au>Houehanou, Corine</au><au>Houinato, Dismand</au><au>Jorgensen, Jutta Mari Adelin</au><au>Kagaruki, Gibson B</au><au>Karki, Khem B</au><au>Labadarios, Demetre</au><au>Martins, Joao S</au><au>Mayige, Mary T</au><au>McClure, Roy Wong</au><au>Mwalim, Omar</au><au>Mwangi, Joseph Kibachio</au><au>Norov, Bolormaa</au><au>Quesnel-Crooks, Sarah</au><au>Silver, Bahendeka K</au><au>Sturua, Lela</au><au>Tsabedze, Lindiwe</au><au>Wesseh, Chea Stanford</au><au>Stokes, Andrew</au><au>Marcus, Maja</au><au>Ebert, Cara</au><au>Davies, Justine I</au><au>Vollmer, Sebastian</au><au>Atun, Rifat</au><au>Bärnighausen, Till W</au><au>Jaacks, Lindsay M</au><au>Wareham, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys</atitle><jtitle>PLoS medicine</jtitle><addtitle>PLoS Med</addtitle><date>2019-03</date><risdate>2019</risdate><volume>16</volume><issue>3</issue><spage>e1002751</spage><pages>e1002751-</pages><issn>1549-1676</issn><issn>1549-1277</issn><eissn>1549-1676</eissn><abstract>The prevalence of diabetes is increasing rapidly in low- and middle-income countries (LMICs), urgently requiring detailed evidence to guide the response of health systems to this epidemic. In an effort to understand at what step in the diabetes care continuum individuals are lost to care, and how this varies between countries and population groups, this study examined health system performance for diabetes among adults in 28 LMICs using a cascade of care approach. We pooled individual participant data from nationally representative surveys done between 2008 and 2016 in 28 LMICs. Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl), random plasma glucose ≥ 11.1 mmol/l (200 mg/dl), HbA1c ≥ 6.5%, or reporting to be taking medication for diabetes. Stages of the care cascade were as follows: tested, diagnosed, lifestyle advice and/or medication given ("treated"), and controlled (HbA1c &lt; 8.0% or equivalent). We stratified cascades of care by country, geographic region, World Bank income group, and individual-level characteristics (age, sex, educational attainment, household wealth quintile, and body mass index [BMI]). We then used logistic regression models with country-level fixed effects to evaluate predictors of (1) testing, (2) treatment, and (3) control. The final sample included 847,413 adults in 28 LMICs (8 low income, 9 lower-middle income, 11 upper-middle income). Survey sample size ranged from 824 in Guyana to 750,451 in India. The prevalence of diabetes was 8.8% (95% CI: 8.2%-9.5%), and the prevalence of undiagnosed diabetes was 4.8% (95% CI: 4.5%-5.2%). Health system performance for management of diabetes showed large losses to care at the stage of being tested, and low rates of diabetes control. Total unmet need for diabetes care (defined as the sum of those not tested, tested but undiagnosed, diagnosed but untreated, and treated but with diabetes not controlled) was 77.0% (95% CI: 74.9%-78.9%). Performance along the care cascade was significantly better in upper-middle income countries, but across all World Bank income groups, only half of participants with diabetes who were tested achieved diabetes control. Greater age, educational attainment, and BMI were associated with higher odds of being tested, being treated, and achieving control. The limitations of this study included the use of a single glucose measurement to assess diabetes, differences in the approach to wealth measurement across surveys, and variation in the date of the surveys. The study uncovered poor management of diabetes along the care cascade, indicating large unmet need for diabetes care across 28 LMICs. Performance across the care cascade varied by World Bank income group and individual-level characteristics, particularly age, educational attainment, and BMI. This policy-relevant analysis can inform country-specific interventions and offers a baseline by which future progress can be measured.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30822339</pmid><doi>10.1371/journal.pmed.1002751</doi><orcidid>https://orcid.org/0000-0002-1531-5983</orcidid><orcidid>https://orcid.org/0000-0002-0242-4259</orcidid><orcidid>https://orcid.org/0000-0001-8080-7872</orcidid><orcidid>https://orcid.org/0000-0001-9295-0035</orcidid><orcidid>https://orcid.org/0000-0002-1054-8104</orcidid><orcidid>https://orcid.org/0000-0003-0622-6695</orcidid><orcidid>https://orcid.org/0000-0002-7791-5167</orcidid><orcidid>https://orcid.org/0000-0003-4904-2087</orcidid><orcidid>https://orcid.org/0000-0001-8074-9393</orcidid><orcidid>https://orcid.org/0000-0003-0801-0775</orcidid><orcidid>https://orcid.org/0000-0002-8502-3636</orcidid><orcidid>https://orcid.org/0000-0001-6481-6242</orcidid><orcidid>https://orcid.org/0000-0002-8878-5505</orcidid><orcidid>https://orcid.org/0000-0001-6834-1838</orcidid><orcidid>https://orcid.org/0000-0002-4182-4212</orcidid><orcidid>https://orcid.org/0000-0002-4232-1625</orcidid><orcidid>https://orcid.org/0000-0003-4861-7870</orcidid><orcidid>https://orcid.org/0000-0003-1940-5262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-1676
ispartof PLoS medicine, 2019-03, Vol.16 (3), p.e1002751
issn 1549-1676
1549-1277
1549-1676
language eng
recordid cdi_plos_journals_2252265650
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adolescent
Adult
Age
Biology and Life Sciences
Body mass
Body mass index
Cascade control
Cross-Sectional Studies
Delivery of Health Care - economics
Delivery of Health Care - trends
Developing countries
Diabetes
Diabetes mellitus
Diabetes Mellitus - economics
Diabetes Mellitus - epidemiology
Diabetes Mellitus - therapy
Diabetes therapy
Diabetics
Epidemics
Epidemiology
Evidence-based medicine
Fasting
Female
Glucose
Glycosylated hemoglobin
Health care
Health care industry
Health sciences
Health Services Needs and Demand - economics
Health Services Needs and Demand - trends
Health surveillance
Health surveys
Health Surveys - economics
Health Surveys - trends
Hospitals
Humans
Income - trends
International aspects
Laboratories
Life Sciences
Low income groups
Male
Medical care quality
Medical research
Medicine and Health Sciences
Middle Aged
Personal income
Polls & surveys
Population
Population studies
Poverty - economics
Poverty - trends
Preventive medicine
Public health
Regression analysis
Research and Analysis Methods
Santé publique et épidémiologie
Social Sciences
Surveys
Systematic review
Young Adult
title Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20system%20performance%20for%20people%20with%20diabetes%20in%2028%20low-%20and%20middle-income%20countries:%20A%20cross-sectional%20study%20of%20nationally%20representative%20surveys&rft.jtitle=PLoS%20medicine&rft.au=Manne-Goehler,%20Jennifer&rft.date=2019-03&rft.volume=16&rft.issue=3&rft.spage=e1002751&rft.pages=e1002751-&rft.issn=1549-1676&rft.eissn=1549-1676&rft_id=info:doi/10.1371/journal.pmed.1002751&rft_dat=%3Cgale_plos_%3EA581098053%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252265650&rft_id=info:pmid/30822339&rft_galeid=A581098053&rft_doaj_id=oai_doaj_org_article_13e59b43bf7049e7b8754826f27aab98&rfr_iscdi=true