Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts

Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2019-07, Vol.14 (7), p.e0217699-e0217699
Hauptverfasser: Vignaux, Patricia A, Bregio, Celyn, Hathaway, Nathaniel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0217699
container_issue 7
container_start_page e0217699
container_title PloS one
container_volume 14
creator Vignaux, Patricia A
Bregio, Celyn
Hathaway, Nathaniel A
description Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.
doi_str_mv 10.1371/journal.pone.0217699
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251783869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592111253</galeid><doaj_id>oai_doaj_org_article_bc19ce24ee1e468aac77467cc89694f1</doaj_id><sourcerecordid>A592111253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgujFjE3aJs2NMIxfA4sLft2GND2ZydA2s0m6OD_A_206012mshfSQMPJc97kvMlJkuc4neOM4Xdb27tONvOd7WCeEswo5w-Sc8wzMqMkzR6ezM-SJ95v07TISkofJ2cZJpSnjJ0nf5a2C85UfTC2Q1ajnbOtDeDQh68L5OG6h04BChZtIEat2sR1GUyHtHXDJGbdQGOVCXskuxq10Fq3H5TW0AFysHPg_YDFnNb2HhC0ldtbpE3lbNVIH_zT5JGWjYdn4_8i-fnp44_ll9nl1efVcnE5U5STMKNFIVUJWSxLS6oJ1bmuyywjNUslpphowmRZEF5numacUQasqHSd0pzxOi-yi-TlUXfXWC9GB70gpMCsjN7wSKyORG3lVuycaaXbCyuNOASsWwvpglENiEphroDkABhyWkqpGMspU6rklOcaR63342591UKtIDotm4nodKUzG7G2N4LStOSH474ZBZyNF-GDaI1X0DSyg-jkcO44CkqziL76B72_upFay1iA6bSN-6pBVCwKTjDGpBi05vdQ8auhNSo-N21ifJLwdpIQmQC_w1r23ovV92__z179mrKvT9gNyCZsvG0Ob9VPwfwIKme9d6DvTMapGLrl1g0xdIsYuyWmvTi9oLuk2_bI_gJokRG6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251783869</pqid></control><display><type>article</type><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A</creator><contributor>Bryk, Mary</contributor><creatorcontrib>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A ; Bryk, Mary</creatorcontrib><description>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0217699</identifier><identifier>PMID: 31269077</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Base sequence ; Biology and life sciences ; Cell division ; Cell lines ; Cells (Biology) ; Chemistry ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; CpG Islands ; Curricula ; Cytosine ; Deoxyribonucleic acid ; Depletion ; DNA ; DNA methylation ; DNA sequencing ; Domains ; EDTA ; Embryo ; Embryo fibroblasts ; Embryo, Mammalian - cytology ; Embryo, Mammalian - metabolism ; Embryonic development ; Embryos ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fluorescence ; Gene expression ; Gene sequencing ; Gene silencing ; Genes ; Genetic engineering ; Genomes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; Heterochromatin protein 1 ; Histone H3 ; Histones ; Histones - genetics ; Histones - metabolism ; House mouse ; In vivo methods and tests ; Kinetics ; Lysine ; Mammalian cells ; Mammals ; Methylation ; Methyltransferases ; Mice ; Modular systems ; Molecular biology ; Nucleotide sequence ; Organic chemistry ; Pharmaceutical sciences ; Pharmacy ; Promoter Regions, Genetic ; Protein binding ; Pyrimidines ; Reporter gene ; Research and analysis methods ; Stem cells ; Velocity</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0217699-e0217699</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Vignaux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Vignaux et al 2019 Vignaux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</citedby><cites>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</cites><orcidid>0000-0002-9807-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31269077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bryk, Mary</contributor><creatorcontrib>Vignaux, Patricia A</creatorcontrib><creatorcontrib>Bregio, Celyn</creatorcontrib><creatorcontrib>Hathaway, Nathaniel A</creatorcontrib><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</description><subject>Animals</subject><subject>Base sequence</subject><subject>Biology and life sciences</subject><subject>Cell division</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Chemistry</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>CpG Islands</subject><subject>Curricula</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Domains</subject><subject>EDTA</subject><subject>Embryo</subject><subject>Embryo fibroblasts</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>Heterochromatin protein 1</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>House mouse</subject><subject>In vivo methods and tests</subject><subject>Kinetics</subject><subject>Lysine</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mice</subject><subject>Modular systems</subject><subject>Molecular biology</subject><subject>Nucleotide sequence</subject><subject>Organic chemistry</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacy</subject><subject>Promoter Regions, Genetic</subject><subject>Protein binding</subject><subject>Pyrimidines</subject><subject>Reporter gene</subject><subject>Research and analysis methods</subject><subject>Stem cells</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgujFjE3aJs2NMIxfA4sLft2GND2ZydA2s0m6OD_A_206012mshfSQMPJc97kvMlJkuc4neOM4Xdb27tONvOd7WCeEswo5w-Sc8wzMqMkzR6ezM-SJ95v07TISkofJ2cZJpSnjJ0nf5a2C85UfTC2Q1ajnbOtDeDQh68L5OG6h04BChZtIEat2sR1GUyHtHXDJGbdQGOVCXskuxq10Fq3H5TW0AFysHPg_YDFnNb2HhC0ldtbpE3lbNVIH_zT5JGWjYdn4_8i-fnp44_ll9nl1efVcnE5U5STMKNFIVUJWSxLS6oJ1bmuyywjNUslpphowmRZEF5numacUQasqHSd0pzxOi-yi-TlUXfXWC9GB70gpMCsjN7wSKyORG3lVuycaaXbCyuNOASsWwvpglENiEphroDkABhyWkqpGMspU6rklOcaR63342591UKtIDotm4nodKUzG7G2N4LStOSH474ZBZyNF-GDaI1X0DSyg-jkcO44CkqziL76B72_upFay1iA6bSN-6pBVCwKTjDGpBi05vdQ8auhNSo-N21ifJLwdpIQmQC_w1r23ovV92__z179mrKvT9gNyCZsvG0Ob9VPwfwIKme9d6DvTMapGLrl1g0xdIsYuyWmvTi9oLuk2_bI_gJokRG6</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Vignaux, Patricia A</creator><creator>Bregio, Celyn</creator><creator>Hathaway, Nathaniel A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9807-0167</orcidid></search><sort><creationdate>20190703</creationdate><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><author>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Base sequence</topic><topic>Biology and life sciences</topic><topic>Cell division</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Chemistry</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>CpG Islands</topic><topic>Curricula</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Domains</topic><topic>EDTA</topic><topic>Embryo</topic><topic>Embryo fibroblasts</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>Heterochromatin protein 1</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>House mouse</topic><topic>In vivo methods and tests</topic><topic>Kinetics</topic><topic>Lysine</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mice</topic><topic>Modular systems</topic><topic>Molecular biology</topic><topic>Nucleotide sequence</topic><topic>Organic chemistry</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacy</topic><topic>Promoter Regions, Genetic</topic><topic>Protein binding</topic><topic>Pyrimidines</topic><topic>Reporter gene</topic><topic>Research and analysis methods</topic><topic>Stem cells</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignaux, Patricia A</creatorcontrib><creatorcontrib>Bregio, Celyn</creatorcontrib><creatorcontrib>Hathaway, Nathaniel A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignaux, Patricia A</au><au>Bregio, Celyn</au><au>Hathaway, Nathaniel A</au><au>Bryk, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0217699</spage><epage>e0217699</epage><pages>e0217699-e0217699</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31269077</pmid><doi>10.1371/journal.pone.0217699</doi><tpages>e0217699</tpages><orcidid>https://orcid.org/0000-0002-9807-0167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-07, Vol.14 (7), p.e0217699-e0217699
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2251783869
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Base sequence
Biology and life sciences
Cell division
Cell lines
Cells (Biology)
Chemistry
Chromatin
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
CpG Islands
Curricula
Cytosine
Deoxyribonucleic acid
Depletion
DNA
DNA methylation
DNA sequencing
Domains
EDTA
Embryo
Embryo fibroblasts
Embryo, Mammalian - cytology
Embryo, Mammalian - metabolism
Embryonic development
Embryos
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Fluorescence
Gene expression
Gene sequencing
Gene silencing
Genes
Genetic engineering
Genomes
Heterochromatin
Heterochromatin - genetics
Heterochromatin - metabolism
Heterochromatin protein 1
Histone H3
Histones
Histones - genetics
Histones - metabolism
House mouse
In vivo methods and tests
Kinetics
Lysine
Mammalian cells
Mammals
Methylation
Methyltransferases
Mice
Modular systems
Molecular biology
Nucleotide sequence
Organic chemistry
Pharmaceutical sciences
Pharmacy
Promoter Regions, Genetic
Protein binding
Pyrimidines
Reporter gene
Research and analysis methods
Stem cells
Velocity
title Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20promoter%20DNA%20sequence%20to%20heterochromatin%20formation%20velocity%20and%20memory%20of%20gene%20repression%20in%20mouse%20embryo%20fibroblasts&rft.jtitle=PloS%20one&rft.au=Vignaux,%20Patricia%20A&rft.date=2019-07-03&rft.volume=14&rft.issue=7&rft.spage=e0217699&rft.epage=e0217699&rft.pages=e0217699-e0217699&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0217699&rft_dat=%3Cgale_plos_%3EA592111253%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251783869&rft_id=info:pmid/31269077&rft_galeid=A592111253&rft_doaj_id=oai_doaj_org_article_bc19ce24ee1e468aac77467cc89694f1&rfr_iscdi=true