Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts
Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1),...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-07, Vol.14 (7), p.e0217699-e0217699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0217699 |
---|---|
container_issue | 7 |
container_start_page | e0217699 |
container_title | PloS one |
container_volume | 14 |
creator | Vignaux, Patricia A Bregio, Celyn Hathaway, Nathaniel A |
description | Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers. |
doi_str_mv | 10.1371/journal.pone.0217699 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251783869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592111253</galeid><doaj_id>oai_doaj_org_article_bc19ce24ee1e468aac77467cc89694f1</doaj_id><sourcerecordid>A592111253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgujFjE3aJs2NMIxfA4sLft2GND2ZydA2s0m6OD_A_206012mshfSQMPJc97kvMlJkuc4neOM4Xdb27tONvOd7WCeEswo5w-Sc8wzMqMkzR6ezM-SJ95v07TISkofJ2cZJpSnjJ0nf5a2C85UfTC2Q1ajnbOtDeDQh68L5OG6h04BChZtIEat2sR1GUyHtHXDJGbdQGOVCXskuxq10Fq3H5TW0AFysHPg_YDFnNb2HhC0ldtbpE3lbNVIH_zT5JGWjYdn4_8i-fnp44_ll9nl1efVcnE5U5STMKNFIVUJWSxLS6oJ1bmuyywjNUslpphowmRZEF5numacUQasqHSd0pzxOi-yi-TlUXfXWC9GB70gpMCsjN7wSKyORG3lVuycaaXbCyuNOASsWwvpglENiEphroDkABhyWkqpGMspU6rklOcaR63342591UKtIDotm4nodKUzG7G2N4LStOSH474ZBZyNF-GDaI1X0DSyg-jkcO44CkqziL76B72_upFay1iA6bSN-6pBVCwKTjDGpBi05vdQ8auhNSo-N21ifJLwdpIQmQC_w1r23ovV92__z179mrKvT9gNyCZsvG0Ob9VPwfwIKme9d6DvTMapGLrl1g0xdIsYuyWmvTi9oLuk2_bI_gJokRG6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251783869</pqid></control><display><type>article</type><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A</creator><contributor>Bryk, Mary</contributor><creatorcontrib>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A ; Bryk, Mary</creatorcontrib><description>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0217699</identifier><identifier>PMID: 31269077</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Base sequence ; Biology and life sciences ; Cell division ; Cell lines ; Cells (Biology) ; Chemistry ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; CpG Islands ; Curricula ; Cytosine ; Deoxyribonucleic acid ; Depletion ; DNA ; DNA methylation ; DNA sequencing ; Domains ; EDTA ; Embryo ; Embryo fibroblasts ; Embryo, Mammalian - cytology ; Embryo, Mammalian - metabolism ; Embryonic development ; Embryos ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fluorescence ; Gene expression ; Gene sequencing ; Gene silencing ; Genes ; Genetic engineering ; Genomes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; Heterochromatin protein 1 ; Histone H3 ; Histones ; Histones - genetics ; Histones - metabolism ; House mouse ; In vivo methods and tests ; Kinetics ; Lysine ; Mammalian cells ; Mammals ; Methylation ; Methyltransferases ; Mice ; Modular systems ; Molecular biology ; Nucleotide sequence ; Organic chemistry ; Pharmaceutical sciences ; Pharmacy ; Promoter Regions, Genetic ; Protein binding ; Pyrimidines ; Reporter gene ; Research and analysis methods ; Stem cells ; Velocity</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0217699-e0217699</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Vignaux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Vignaux et al 2019 Vignaux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</citedby><cites>FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</cites><orcidid>0000-0002-9807-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31269077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bryk, Mary</contributor><creatorcontrib>Vignaux, Patricia A</creatorcontrib><creatorcontrib>Bregio, Celyn</creatorcontrib><creatorcontrib>Hathaway, Nathaniel A</creatorcontrib><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</description><subject>Animals</subject><subject>Base sequence</subject><subject>Biology and life sciences</subject><subject>Cell division</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Chemistry</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>CpG Islands</subject><subject>Curricula</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Domains</subject><subject>EDTA</subject><subject>Embryo</subject><subject>Embryo fibroblasts</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>Heterochromatin protein 1</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>House mouse</subject><subject>In vivo methods and tests</subject><subject>Kinetics</subject><subject>Lysine</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mice</subject><subject>Modular systems</subject><subject>Molecular biology</subject><subject>Nucleotide sequence</subject><subject>Organic chemistry</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacy</subject><subject>Promoter Regions, Genetic</subject><subject>Protein binding</subject><subject>Pyrimidines</subject><subject>Reporter gene</subject><subject>Research and analysis methods</subject><subject>Stem cells</subject><subject>Velocity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgujFjE3aJs2NMIxfA4sLft2GND2ZydA2s0m6OD_A_206012mshfSQMPJc97kvMlJkuc4neOM4Xdb27tONvOd7WCeEswo5w-Sc8wzMqMkzR6ezM-SJ95v07TISkofJ2cZJpSnjJ0nf5a2C85UfTC2Q1ajnbOtDeDQh68L5OG6h04BChZtIEat2sR1GUyHtHXDJGbdQGOVCXskuxq10Fq3H5TW0AFysHPg_YDFnNb2HhC0ldtbpE3lbNVIH_zT5JGWjYdn4_8i-fnp44_ll9nl1efVcnE5U5STMKNFIVUJWSxLS6oJ1bmuyywjNUslpphowmRZEF5numacUQasqHSd0pzxOi-yi-TlUXfXWC9GB70gpMCsjN7wSKyORG3lVuycaaXbCyuNOASsWwvpglENiEphroDkABhyWkqpGMspU6rklOcaR63342591UKtIDotm4nodKUzG7G2N4LStOSH474ZBZyNF-GDaI1X0DSyg-jkcO44CkqziL76B72_upFay1iA6bSN-6pBVCwKTjDGpBi05vdQ8auhNSo-N21ifJLwdpIQmQC_w1r23ovV92__z179mrKvT9gNyCZsvG0Ob9VPwfwIKme9d6DvTMapGLrl1g0xdIsYuyWmvTi9oLuk2_bI_gJokRG6</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Vignaux, Patricia A</creator><creator>Bregio, Celyn</creator><creator>Hathaway, Nathaniel A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9807-0167</orcidid></search><sort><creationdate>20190703</creationdate><title>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</title><author>Vignaux, Patricia A ; Bregio, Celyn ; Hathaway, Nathaniel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-655ac8e3932fa6f26f4fd8332d70a1612f27a8529d3fd79767e75bfd06479d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Base sequence</topic><topic>Biology and life sciences</topic><topic>Cell division</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Chemistry</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>CpG Islands</topic><topic>Curricula</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Domains</topic><topic>EDTA</topic><topic>Embryo</topic><topic>Embryo fibroblasts</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>Heterochromatin protein 1</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>House mouse</topic><topic>In vivo methods and tests</topic><topic>Kinetics</topic><topic>Lysine</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mice</topic><topic>Modular systems</topic><topic>Molecular biology</topic><topic>Nucleotide sequence</topic><topic>Organic chemistry</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacy</topic><topic>Promoter Regions, Genetic</topic><topic>Protein binding</topic><topic>Pyrimidines</topic><topic>Reporter gene</topic><topic>Research and analysis methods</topic><topic>Stem cells</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignaux, Patricia A</creatorcontrib><creatorcontrib>Bregio, Celyn</creatorcontrib><creatorcontrib>Hathaway, Nathaniel A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignaux, Patricia A</au><au>Bregio, Celyn</au><au>Hathaway, Nathaniel A</au><au>Bryk, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0217699</spage><epage>e0217699</epage><pages>e0217699-e0217699</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31269077</pmid><doi>10.1371/journal.pone.0217699</doi><tpages>e0217699</tpages><orcidid>https://orcid.org/0000-0002-9807-0167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-07, Vol.14 (7), p.e0217699-e0217699 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2251783869 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Base sequence Biology and life sciences Cell division Cell lines Cells (Biology) Chemistry Chromatin Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism CpG Islands Curricula Cytosine Deoxyribonucleic acid Depletion DNA DNA methylation DNA sequencing Domains EDTA Embryo Embryo fibroblasts Embryo, Mammalian - cytology Embryo, Mammalian - metabolism Embryonic development Embryos Epigenesis, Genetic Epigenetic inheritance Epigenetics Fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Fluorescence Gene expression Gene sequencing Gene silencing Genes Genetic engineering Genomes Heterochromatin Heterochromatin - genetics Heterochromatin - metabolism Heterochromatin protein 1 Histone H3 Histones Histones - genetics Histones - metabolism House mouse In vivo methods and tests Kinetics Lysine Mammalian cells Mammals Methylation Methyltransferases Mice Modular systems Molecular biology Nucleotide sequence Organic chemistry Pharmaceutical sciences Pharmacy Promoter Regions, Genetic Protein binding Pyrimidines Reporter gene Research and analysis methods Stem cells Velocity |
title | Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20promoter%20DNA%20sequence%20to%20heterochromatin%20formation%20velocity%20and%20memory%20of%20gene%20repression%20in%20mouse%20embryo%20fibroblasts&rft.jtitle=PloS%20one&rft.au=Vignaux,%20Patricia%20A&rft.date=2019-07-03&rft.volume=14&rft.issue=7&rft.spage=e0217699&rft.epage=e0217699&rft.pages=e0217699-e0217699&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0217699&rft_dat=%3Cgale_plos_%3EA592111253%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251783869&rft_id=info:pmid/31269077&rft_galeid=A592111253&rft_doaj_id=oai_doaj_org_article_bc19ce24ee1e468aac77467cc89694f1&rfr_iscdi=true |