Characterization of genes and alleles involved in the control of flowering time in grapevine
Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the ex...
Gespeichert in:
Veröffentlicht in: | PloS one 2019-07, Vol.14 (7), p.e0214703 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0214703 |
container_title | PloS one |
container_volume | 14 |
creator | Kamal, Nadia Ochßner, Iris Schwandner, Anna Viehöver, Prisca Hausmann, Ludger Töpfer, Reinhard Weisshaar, Bernd Holtgräwe, Daniela |
description | Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering 'Villard Blanc' was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network. |
doi_str_mv | 10.1371/journal.pone.0214703 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251782472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592111247</galeid><doaj_id>oai_doaj_org_article_8c11cc6cc7bd43d4b775c5905ec7e2f0</doaj_id><sourcerecordid>A592111247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-92686f1ec079c04dc1c189c3e4ba93e0ad5f229e1e11ad2038d26fd5ef6855913</originalsourceid><addsrcrecordid>eNqNktuL1DAUxoso7rr6H4gWBMGHGXNp0-ZFWAYvAwsL3p6EkElOOhkyyWzSGS9_vanTXaagIHnIIf2dL-l3vqJ4itEc0wa_3oR99NLNd8HDHBFcNYjeK84xp2TGCKL3T-qz4lFKG4Rq2jL2sDijmDCOCDsvvi3WMkrVQ7S_ZG-DL4MpO_CQSul1KZ0Dl2vrD8EdQOei7NdQquD7GNwAGxe-527flb3dwgB0Ue7gYD08Lh4Y6RI8GfeL4su7t58XH2ZX1--Xi8urmWKc9DNOWMsMBoUarlClFVa45YpCtZKcApK6NoRwwICx1Pl3Wk2Y0TUY1tY1x_SieH7U3bmQxGhMEoTUuGlJ1ZBMLI-EDnIjdtFuZfwpgrTiz0GInZCxt8qBaBXGSjGlmpWuqK5WTVOrmqMaVAPEoKz1Zrxtv9qCVpCtkG4iOv3i7Vp04SAYQ22eSBZ4MQrEcLOH1P_jySPVyfwq603IYmprkxKXNScY44xlav4XKi8NW5unBMbm80nDq0nDMEn40Xdyn5JYfvr4_-z11yn78oRdg3T9OgW3HzKVpmB1BFUMKUUwd85hJIZk37ohhmSLMdm57dmp63dNt1GmvwGWffP3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251782472</pqid></control><display><type>article</type><title>Characterization of genes and alleles involved in the control of flowering time in grapevine</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kamal, Nadia ; Ochßner, Iris ; Schwandner, Anna ; Viehöver, Prisca ; Hausmann, Ludger ; Töpfer, Reinhard ; Weisshaar, Bernd ; Holtgräwe, Daniela</creator><creatorcontrib>Kamal, Nadia ; Ochßner, Iris ; Schwandner, Anna ; Viehöver, Prisca ; Hausmann, Ludger ; Töpfer, Reinhard ; Weisshaar, Bernd ; Holtgräwe, Daniela</creatorcontrib><description>Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering 'Villard Blanc' was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0214703</identifier><identifier>PMID: 31269026</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Arabidopsis thaliana ; Binding sites ; Bioinformatics ; Biology ; Biology and Life Sciences ; Biotechnology ; Breeding ; Chromosome 1 ; Chromosome Mapping ; Chromosomes ; Climate change ; Climatic conditions ; Computational biology ; DNA sequencing ; Flowering ; Flowers & plants ; Flowers - genetics ; Flowers - growth & development ; Fruits ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene mapping ; Gene sequencing ; Genes ; Genes, Plant ; Genetic aspects ; Genomes ; Genomics ; Genotypes ; Global temperature changes ; Grapes ; Grapevines ; Haplotypes ; Homology ; Kinases ; Mapping ; Methods ; Phenotypes ; Physiological aspects ; Plant Breeding ; Plant flowering ; Plants (botany) ; Population genetics ; Population studies ; Quantitative genetics ; Quantitative Trait Loci ; Research and Analysis Methods ; Ripening ; Vitis - genetics ; Vitis - growth & development ; Vitis vinifera ; Wine ; Wines ; Workflow ; Workflow software</subject><ispartof>PloS one, 2019-07, Vol.14 (7), p.e0214703</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Kamal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Kamal et al 2019 Kamal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-92686f1ec079c04dc1c189c3e4ba93e0ad5f229e1e11ad2038d26fd5ef6855913</citedby><cites>FETCH-LOGICAL-c692t-92686f1ec079c04dc1c189c3e4ba93e0ad5f229e1e11ad2038d26fd5ef6855913</cites><orcidid>0000-0002-1062-4576 ; 0000-0002-7635-3473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608932/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31269026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamal, Nadia</creatorcontrib><creatorcontrib>Ochßner, Iris</creatorcontrib><creatorcontrib>Schwandner, Anna</creatorcontrib><creatorcontrib>Viehöver, Prisca</creatorcontrib><creatorcontrib>Hausmann, Ludger</creatorcontrib><creatorcontrib>Töpfer, Reinhard</creatorcontrib><creatorcontrib>Weisshaar, Bernd</creatorcontrib><creatorcontrib>Holtgräwe, Daniela</creatorcontrib><title>Characterization of genes and alleles involved in the control of flowering time in grapevine</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering 'Villard Blanc' was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network.</description><subject>Alleles</subject><subject>Arabidopsis thaliana</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosome 1</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Computational biology</subject><subject>DNA sequencing</subject><subject>Flowering</subject><subject>Flowers & plants</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Global temperature changes</subject><subject>Grapes</subject><subject>Grapevines</subject><subject>Haplotypes</subject><subject>Homology</subject><subject>Kinases</subject><subject>Mapping</subject><subject>Methods</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Plant Breeding</subject><subject>Plant flowering</subject><subject>Plants (botany)</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research and Analysis Methods</subject><subject>Ripening</subject><subject>Vitis - genetics</subject><subject>Vitis - growth & development</subject><subject>Vitis vinifera</subject><subject>Wine</subject><subject>Wines</subject><subject>Workflow</subject><subject>Workflow software</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuL1DAUxoso7rr6H4gWBMGHGXNp0-ZFWAYvAwsL3p6EkElOOhkyyWzSGS9_vanTXaagIHnIIf2dL-l3vqJ4itEc0wa_3oR99NLNd8HDHBFcNYjeK84xp2TGCKL3T-qz4lFKG4Rq2jL2sDijmDCOCDsvvi3WMkrVQ7S_ZG-DL4MpO_CQSul1KZ0Dl2vrD8EdQOei7NdQquD7GNwAGxe-527flb3dwgB0Ue7gYD08Lh4Y6RI8GfeL4su7t58XH2ZX1--Xi8urmWKc9DNOWMsMBoUarlClFVa45YpCtZKcApK6NoRwwICx1Pl3Wk2Y0TUY1tY1x_SieH7U3bmQxGhMEoTUuGlJ1ZBMLI-EDnIjdtFuZfwpgrTiz0GInZCxt8qBaBXGSjGlmpWuqK5WTVOrmqMaVAPEoKz1Zrxtv9qCVpCtkG4iOv3i7Vp04SAYQ22eSBZ4MQrEcLOH1P_jySPVyfwq603IYmprkxKXNScY44xlav4XKi8NW5unBMbm80nDq0nDMEn40Xdyn5JYfvr4_-z11yn78oRdg3T9OgW3HzKVpmB1BFUMKUUwd85hJIZk37ohhmSLMdm57dmp63dNt1GmvwGWffP3</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Kamal, Nadia</creator><creator>Ochßner, Iris</creator><creator>Schwandner, Anna</creator><creator>Viehöver, Prisca</creator><creator>Hausmann, Ludger</creator><creator>Töpfer, Reinhard</creator><creator>Weisshaar, Bernd</creator><creator>Holtgräwe, Daniela</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1062-4576</orcidid><orcidid>https://orcid.org/0000-0002-7635-3473</orcidid></search><sort><creationdate>20190703</creationdate><title>Characterization of genes and alleles involved in the control of flowering time in grapevine</title><author>Kamal, Nadia ; Ochßner, Iris ; Schwandner, Anna ; Viehöver, Prisca ; Hausmann, Ludger ; Töpfer, Reinhard ; Weisshaar, Bernd ; Holtgräwe, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-92686f1ec079c04dc1c189c3e4ba93e0ad5f229e1e11ad2038d26fd5ef6855913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alleles</topic><topic>Arabidopsis thaliana</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosome 1</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Computational biology</topic><topic>DNA sequencing</topic><topic>Flowering</topic><topic>Flowers & plants</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Global temperature changes</topic><topic>Grapes</topic><topic>Grapevines</topic><topic>Haplotypes</topic><topic>Homology</topic><topic>Kinases</topic><topic>Mapping</topic><topic>Methods</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Plant Breeding</topic><topic>Plant flowering</topic><topic>Plants (botany)</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research and Analysis Methods</topic><topic>Ripening</topic><topic>Vitis - genetics</topic><topic>Vitis - growth & development</topic><topic>Vitis vinifera</topic><topic>Wine</topic><topic>Wines</topic><topic>Workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Nadia</creatorcontrib><creatorcontrib>Ochßner, Iris</creatorcontrib><creatorcontrib>Schwandner, Anna</creatorcontrib><creatorcontrib>Viehöver, Prisca</creatorcontrib><creatorcontrib>Hausmann, Ludger</creatorcontrib><creatorcontrib>Töpfer, Reinhard</creatorcontrib><creatorcontrib>Weisshaar, Bernd</creatorcontrib><creatorcontrib>Holtgräwe, Daniela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamal, Nadia</au><au>Ochßner, Iris</au><au>Schwandner, Anna</au><au>Viehöver, Prisca</au><au>Hausmann, Ludger</au><au>Töpfer, Reinhard</au><au>Weisshaar, Bernd</au><au>Holtgräwe, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of genes and alleles involved in the control of flowering time in grapevine</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>e0214703</spage><pages>e0214703-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering 'Villard Blanc' was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31269026</pmid><doi>10.1371/journal.pone.0214703</doi><tpages>e0214703</tpages><orcidid>https://orcid.org/0000-0002-1062-4576</orcidid><orcidid>https://orcid.org/0000-0002-7635-3473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-07, Vol.14 (7), p.e0214703 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2251782472 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alleles Arabidopsis thaliana Binding sites Bioinformatics Biology Biology and Life Sciences Biotechnology Breeding Chromosome 1 Chromosome Mapping Chromosomes Climate change Climatic conditions Computational biology DNA sequencing Flowering Flowers & plants Flowers - genetics Flowers - growth & development Fruits Gene expression Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Gene mapping Gene sequencing Genes Genes, Plant Genetic aspects Genomes Genomics Genotypes Global temperature changes Grapes Grapevines Haplotypes Homology Kinases Mapping Methods Phenotypes Physiological aspects Plant Breeding Plant flowering Plants (botany) Population genetics Population studies Quantitative genetics Quantitative Trait Loci Research and Analysis Methods Ripening Vitis - genetics Vitis - growth & development Vitis vinifera Wine Wines Workflow Workflow software |
title | Characterization of genes and alleles involved in the control of flowering time in grapevine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20genes%20and%20alleles%20involved%20in%20the%20control%20of%20flowering%20time%20in%20grapevine&rft.jtitle=PloS%20one&rft.au=Kamal,%20Nadia&rft.date=2019-07-03&rft.volume=14&rft.issue=7&rft.spage=e0214703&rft.pages=e0214703-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0214703&rft_dat=%3Cgale_plos_%3EA592111247%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251782472&rft_id=info:pmid/31269026&rft_galeid=A592111247&rft_doaj_id=oai_doaj_org_article_8c11cc6cc7bd43d4b775c5905ec7e2f0&rfr_iscdi=true |