Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens

Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2018-11, Vol.14 (11), p.e1007444
Hauptverfasser: Shen, Qian, Beucler, Matthew J, Ray, Stephanie C, Rappleye, Chad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e1007444
container_title PLoS pathogens
container_volume 14
creator Shen, Qian
Beucler, Matthew J
Ray, Stephanie C
Rappleye, Chad A
description Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.
doi_str_mv 10.1371/journal.ppat.1007444
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2251104442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8018edcca0a04ea98846a4c10fa4d5b0</doaj_id><sourcerecordid>2251104442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-841bb394d188c2fe1285bb8051cfb0e5cf404309d7178a14c0496a6be269b5463</originalsourceid><addsrcrecordid>eNp1Uttu1DAQjRAVLYU_QGCJ52w9zjhxXpBQRWGlXl7KszV2nGxW2TjY2Ur9rv4H30TSTav2gSePPOecOXNJkk_AV5AVcLb1-9BTtxoGGlfAeYGIb5ITkDJLi6zAty_i4-R9jFvOETLI3yXHGUcpUOFJUl-RDX7YUOMY2bG9o7H1PTP3bH1xnf59YGNom8aFyIKLU2wf075mM8VHv6OOWT8MLrA6-B1r-zGQdV237yiwydrGN66PH5KjmrroPi7vafL74sft-a_08ubn-vz7ZWqlyMdUIRiTlViBUlbUDoSSxiguwdaGO2lr5JjxsiqgUARoOZY55caJvDQS8-w0-XLQHTof9TKiqIWQAHwakJgQ6wOi8rTVQ2h3FO61p1Y_fvjQaApjazunFQflKmuJE0dHpVKYE1rgNWElDZ-0vi3V9mY3Id3cfPdK9HWmbze68Xc6F0UBYjbzdREI_s9-GvB_LOMBNW0qxuDq5wrA9XwLTyw934JebmGifX7p7pn0tPzsH44ftNo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251104442</pqid></control><display><type>article</type><title>Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Shen, Qian ; Beucler, Matthew J ; Ray, Stephanie C ; Rappleye, Chad A</creator><creatorcontrib>Shen, Qian ; Beucler, Matthew J ; Ray, Stephanie C ; Rappleye, Chad A</creatorcontrib><description>Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1007444</identifier><identifier>PMID: 30452484</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive immunity ; Animals ; Antiporters - metabolism ; Attenuation ; Biology and Life Sciences ; Cation Transport Proteins - metabolism ; Cell activation ; Cell Line ; Copper ; Copper - metabolism ; Copper - toxicity ; CTR3 gene ; Defense mechanisms ; Deoxyribonucleic acid ; DNA ; Fungi ; Gene expression ; Genetic screening ; Histoplasma - immunology ; Histoplasma - metabolism ; Histoplasmosis ; Histoplasmosis - metabolism ; Immune response ; Immune system ; Immunity ; Immunological tolerance ; Infections ; Innate immunity ; Interferon-gamma - metabolism ; Intracellular ; Iron ; Iron - metabolism ; Macrophage Activation - physiology ; Macrophages ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mutation ; Pathogens ; Phagocytes ; Phagosomes ; Phagosomes - metabolism ; Physical sciences ; Proteins ; Salmonella ; Switches ; Toxicity ; Transcription ; Tuberculosis ; Yeast ; Yeasts ; γ-Interferon</subject><ispartof>PLoS pathogens, 2018-11, Vol.14 (11), p.e1007444</ispartof><rights>2018 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Shen et al 2018 Shen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-841bb394d188c2fe1285bb8051cfb0e5cf404309d7178a14c0496a6be269b5463</citedby><cites>FETCH-LOGICAL-c526t-841bb394d188c2fe1285bb8051cfb0e5cf404309d7178a14c0496a6be269b5463</cites><orcidid>0000-0001-8334-7736 ; 0000-0002-6390-6198 ; 0000-0001-7880-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30452484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Beucler, Matthew J</creatorcontrib><creatorcontrib>Ray, Stephanie C</creatorcontrib><creatorcontrib>Rappleye, Chad A</creatorcontrib><title>Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.</description><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Antiporters - metabolism</subject><subject>Attenuation</subject><subject>Biology and Life Sciences</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell activation</subject><subject>Cell Line</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Copper - toxicity</subject><subject>CTR3 gene</subject><subject>Defense mechanisms</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genetic screening</subject><subject>Histoplasma - immunology</subject><subject>Histoplasma - metabolism</subject><subject>Histoplasmosis</subject><subject>Histoplasmosis - metabolism</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunological tolerance</subject><subject>Infections</subject><subject>Innate immunity</subject><subject>Interferon-gamma - metabolism</subject><subject>Intracellular</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Macrophage Activation - physiology</subject><subject>Macrophages</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phagocytes</subject><subject>Phagosomes</subject><subject>Phagosomes - metabolism</subject><subject>Physical sciences</subject><subject>Proteins</subject><subject>Salmonella</subject><subject>Switches</subject><subject>Toxicity</subject><subject>Transcription</subject><subject>Tuberculosis</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>γ-Interferon</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uttu1DAQjRAVLYU_QGCJ52w9zjhxXpBQRWGlXl7KszV2nGxW2TjY2Ur9rv4H30TSTav2gSePPOecOXNJkk_AV5AVcLb1-9BTtxoGGlfAeYGIb5ITkDJLi6zAty_i4-R9jFvOETLI3yXHGUcpUOFJUl-RDX7YUOMY2bG9o7H1PTP3bH1xnf59YGNom8aFyIKLU2wf075mM8VHv6OOWT8MLrA6-B1r-zGQdV237yiwydrGN66PH5KjmrroPi7vafL74sft-a_08ubn-vz7ZWqlyMdUIRiTlViBUlbUDoSSxiguwdaGO2lr5JjxsiqgUARoOZY55caJvDQS8-w0-XLQHTof9TKiqIWQAHwakJgQ6wOi8rTVQ2h3FO61p1Y_fvjQaApjazunFQflKmuJE0dHpVKYE1rgNWElDZ-0vi3V9mY3Id3cfPdK9HWmbze68Xc6F0UBYjbzdREI_s9-GvB_LOMBNW0qxuDq5wrA9XwLTyw934JebmGifX7p7pn0tPzsH44ftNo</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Shen, Qian</creator><creator>Beucler, Matthew J</creator><creator>Ray, Stephanie C</creator><creator>Rappleye, Chad A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8334-7736</orcidid><orcidid>https://orcid.org/0000-0002-6390-6198</orcidid><orcidid>https://orcid.org/0000-0001-7880-5958</orcidid></search><sort><creationdate>20181101</creationdate><title>Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens</title><author>Shen, Qian ; Beucler, Matthew J ; Ray, Stephanie C ; Rappleye, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-841bb394d188c2fe1285bb8051cfb0e5cf404309d7178a14c0496a6be269b5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Antiporters - metabolism</topic><topic>Attenuation</topic><topic>Biology and Life Sciences</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell activation</topic><topic>Cell Line</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Copper - toxicity</topic><topic>CTR3 gene</topic><topic>Defense mechanisms</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genetic screening</topic><topic>Histoplasma - immunology</topic><topic>Histoplasma - metabolism</topic><topic>Histoplasmosis</topic><topic>Histoplasmosis - metabolism</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunological tolerance</topic><topic>Infections</topic><topic>Innate immunity</topic><topic>Interferon-gamma - metabolism</topic><topic>Intracellular</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Macrophage Activation - physiology</topic><topic>Macrophages</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phagocytes</topic><topic>Phagosomes</topic><topic>Phagosomes - metabolism</topic><topic>Physical sciences</topic><topic>Proteins</topic><topic>Salmonella</topic><topic>Switches</topic><topic>Toxicity</topic><topic>Transcription</topic><topic>Tuberculosis</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Qian</creatorcontrib><creatorcontrib>Beucler, Matthew J</creatorcontrib><creatorcontrib>Ray, Stephanie C</creatorcontrib><creatorcontrib>Rappleye, Chad A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Qian</au><au>Beucler, Matthew J</au><au>Ray, Stephanie C</au><au>Rappleye, Chad A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>14</volume><issue>11</issue><spage>e1007444</spage><pages>e1007444-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30452484</pmid><doi>10.1371/journal.ppat.1007444</doi><orcidid>https://orcid.org/0000-0001-8334-7736</orcidid><orcidid>https://orcid.org/0000-0002-6390-6198</orcidid><orcidid>https://orcid.org/0000-0001-7880-5958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2018-11, Vol.14 (11), p.e1007444
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2251104442
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adaptive immunity
Animals
Antiporters - metabolism
Attenuation
Biology and Life Sciences
Cation Transport Proteins - metabolism
Cell activation
Cell Line
Copper
Copper - metabolism
Copper - toxicity
CTR3 gene
Defense mechanisms
Deoxyribonucleic acid
DNA
Fungi
Gene expression
Genetic screening
Histoplasma - immunology
Histoplasma - metabolism
Histoplasmosis
Histoplasmosis - metabolism
Immune response
Immune system
Immunity
Immunological tolerance
Infections
Innate immunity
Interferon-gamma - metabolism
Intracellular
Iron
Iron - metabolism
Macrophage Activation - physiology
Macrophages
Medicine and Health Sciences
Mice
Mice, Inbred C57BL
Mutation
Pathogens
Phagocytes
Phagosomes
Phagosomes - metabolism
Physical sciences
Proteins
Salmonella
Switches
Toxicity
Transcription
Tuberculosis
Yeast
Yeasts
γ-Interferon
title Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20activation%20by%20IFN-%CE%B3%20triggers%20restriction%20of%20phagosomal%20copper%20from%20intracellular%20pathogens&rft.jtitle=PLoS%20pathogens&rft.au=Shen,%20Qian&rft.date=2018-11-01&rft.volume=14&rft.issue=11&rft.spage=e1007444&rft.pages=e1007444-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1007444&rft_dat=%3Cproquest_plos_%3E2251104442%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251104442&rft_id=info:pmid/30452484&rft_doaj_id=oai_doaj_org_article_8018edcca0a04ea98846a4c10fa4d5b0&rfr_iscdi=true