The evolution of hybrid fitness during speciation
The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation ha...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2019-05, Vol.15 (5), p.e1008125-e1008125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008125 |
---|---|
container_issue | 5 |
container_start_page | e1008125 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Dagilis, Andrius J Kirkpatrick, Mark Bolnick, Daniel I |
description | The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation. |
doi_str_mv | 10.1371/journal.pgen.1008125 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251079012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587702459</galeid><doaj_id>oai_doaj_org_article_247bbdd47ab9421ea8ebfd8e91ea35d6</doaj_id><sourcerecordid>A587702459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-5ea3db56890709c03110c114b16e607a998884757939fb4ecfdfb580e34c4f4c3</originalsourceid><addsrcrecordid>eNqVk99rFDEQxxdRbK3-B6ILgujDnckm2SQvQin-OCgWtPoasslkL2Vvcya7xf735rxtuZU-KHnIMPnMdzLJTFE8x2iJCcfvrsIYe90tty30S4yQwBV7UBxjxsiCU0QfHthHxZOUrhAiTEj-uDgiGDHJMDku8OUaSrgO3Tj40JfBleubJnpbOj_0kFJpx-j7tkxbMF7vmKfFI6e7BM-m_aT4_vHD5dnnxfnFp9XZ6fnC8KoeFgw0sQ2rhUQcSYMIxshgTBtcQ424llIIQTnjkkjXUDDOuoYJBIQa6qghJ8XLve62C0lN1SZVVQwjLhGuMrHaEzboK7WNfqPjjQraqz-OEFul4-BNB6qivGmspVw3klYYtIDGWQEym4TZOmu9n7KNzQasgX6IupuJzk96v1ZtuFY1Q1WuLQu8mQRi-DlCGtTGJwNdp3sI4-7epMKECEkz-uov9P7qJqrVuQDfu5Dzmp2oOmWCc1RRJjO1vIfKy8LGm9CD89k_C3g7C8jMAL-GVo8pqdW3r__Bfvl39uLHnH19wK5Bd8M6TS2Y5iDdgyaGlCK4uw_BSO2m4Pbl1G4K1DQFOezF4WfeBd22PfkNsBj_eg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251079012</pqid></control><display><type>article</type><title>The evolution of hybrid fitness during speciation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dagilis, Andrius J ; Kirkpatrick, Mark ; Bolnick, Daniel I</creator><contributor>Buerkle, Alex</contributor><creatorcontrib>Dagilis, Andrius J ; Kirkpatrick, Mark ; Bolnick, Daniel I ; Buerkle, Alex</creatorcontrib><description>The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008125</identifier><identifier>PMID: 31059513</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Biology and Life Sciences ; Chimera - genetics ; Computer Simulation ; Editing ; Epistasis ; Epistasis, Genetic ; Evolution ; Genes ; Genetic Fitness ; Genetic research ; Genetic Speciation ; Genetics ; Heterosis ; Hybrid Vigor ; Hybridization ; Hybridization, Genetic ; Methods ; Models, Genetic ; Mutation ; Novels ; Plants - genetics ; Reproductive fitness ; Reproductive Isolation ; Research and Analysis Methods ; Saccharomyces cerevisiae - genetics ; Selection, Genetic ; Speciation ; Trends ; Writing</subject><ispartof>PLoS genetics, 2019-05, Vol.15 (5), p.e1008125-e1008125</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Dagilis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Dagilis et al 2019 Dagilis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-5ea3db56890709c03110c114b16e607a998884757939fb4ecfdfb580e34c4f4c3</citedby><cites>FETCH-LOGICAL-c726t-5ea3db56890709c03110c114b16e607a998884757939fb4ecfdfb580e34c4f4c3</cites><orcidid>0000-0003-3148-6296 ; 0000-0003-2013-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Buerkle, Alex</contributor><creatorcontrib>Dagilis, Andrius J</creatorcontrib><creatorcontrib>Kirkpatrick, Mark</creatorcontrib><creatorcontrib>Bolnick, Daniel I</creatorcontrib><title>The evolution of hybrid fitness during speciation</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.</description><subject>Animals</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Chimera - genetics</subject><subject>Computer Simulation</subject><subject>Editing</subject><subject>Epistasis</subject><subject>Epistasis, Genetic</subject><subject>Evolution</subject><subject>Genes</subject><subject>Genetic Fitness</subject><subject>Genetic research</subject><subject>Genetic Speciation</subject><subject>Genetics</subject><subject>Heterosis</subject><subject>Hybrid Vigor</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Novels</subject><subject>Plants - genetics</subject><subject>Reproductive fitness</subject><subject>Reproductive Isolation</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Selection, Genetic</subject><subject>Speciation</subject><subject>Trends</subject><subject>Writing</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99rFDEQxxdRbK3-B6ILgujDnckm2SQvQin-OCgWtPoasslkL2Vvcya7xf735rxtuZU-KHnIMPnMdzLJTFE8x2iJCcfvrsIYe90tty30S4yQwBV7UBxjxsiCU0QfHthHxZOUrhAiTEj-uDgiGDHJMDku8OUaSrgO3Tj40JfBleubJnpbOj_0kFJpx-j7tkxbMF7vmKfFI6e7BM-m_aT4_vHD5dnnxfnFp9XZ6fnC8KoeFgw0sQ2rhUQcSYMIxshgTBtcQ424llIIQTnjkkjXUDDOuoYJBIQa6qghJ8XLve62C0lN1SZVVQwjLhGuMrHaEzboK7WNfqPjjQraqz-OEFul4-BNB6qivGmspVw3klYYtIDGWQEym4TZOmu9n7KNzQasgX6IupuJzk96v1ZtuFY1Q1WuLQu8mQRi-DlCGtTGJwNdp3sI4-7epMKECEkz-uov9P7qJqrVuQDfu5Dzmp2oOmWCc1RRJjO1vIfKy8LGm9CD89k_C3g7C8jMAL-GVo8pqdW3r__Bfvl39uLHnH19wK5Bd8M6TS2Y5iDdgyaGlCK4uw_BSO2m4Pbl1G4K1DQFOezF4WfeBd22PfkNsBj_eg</recordid><startdate>20190506</startdate><enddate>20190506</enddate><creator>Dagilis, Andrius J</creator><creator>Kirkpatrick, Mark</creator><creator>Bolnick, Daniel I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3148-6296</orcidid><orcidid>https://orcid.org/0000-0003-2013-0825</orcidid></search><sort><creationdate>20190506</creationdate><title>The evolution of hybrid fitness during speciation</title><author>Dagilis, Andrius J ; Kirkpatrick, Mark ; Bolnick, Daniel I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-5ea3db56890709c03110c114b16e607a998884757939fb4ecfdfb580e34c4f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Chimera - genetics</topic><topic>Computer Simulation</topic><topic>Editing</topic><topic>Epistasis</topic><topic>Epistasis, Genetic</topic><topic>Evolution</topic><topic>Genes</topic><topic>Genetic Fitness</topic><topic>Genetic research</topic><topic>Genetic Speciation</topic><topic>Genetics</topic><topic>Heterosis</topic><topic>Hybrid Vigor</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Novels</topic><topic>Plants - genetics</topic><topic>Reproductive fitness</topic><topic>Reproductive Isolation</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Selection, Genetic</topic><topic>Speciation</topic><topic>Trends</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagilis, Andrius J</creatorcontrib><creatorcontrib>Kirkpatrick, Mark</creatorcontrib><creatorcontrib>Bolnick, Daniel I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagilis, Andrius J</au><au>Kirkpatrick, Mark</au><au>Bolnick, Daniel I</au><au>Buerkle, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of hybrid fitness during speciation</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-05-06</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>e1008125</spage><epage>e1008125</epage><pages>e1008125-e1008125</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31059513</pmid><doi>10.1371/journal.pgen.1008125</doi><orcidid>https://orcid.org/0000-0003-3148-6296</orcidid><orcidid>https://orcid.org/0000-0003-2013-0825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-05, Vol.15 (5), p.e1008125-e1008125 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251079012 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biology Biology and Life Sciences Chimera - genetics Computer Simulation Editing Epistasis Epistasis, Genetic Evolution Genes Genetic Fitness Genetic research Genetic Speciation Genetics Heterosis Hybrid Vigor Hybridization Hybridization, Genetic Methods Models, Genetic Mutation Novels Plants - genetics Reproductive fitness Reproductive Isolation Research and Analysis Methods Saccharomyces cerevisiae - genetics Selection, Genetic Speciation Trends Writing |
title | The evolution of hybrid fitness during speciation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20hybrid%20fitness%20during%20speciation&rft.jtitle=PLoS%20genetics&rft.au=Dagilis,%20Andrius%20J&rft.date=2019-05-06&rft.volume=15&rft.issue=5&rft.spage=e1008125&rft.epage=e1008125&rft.pages=e1008125-e1008125&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008125&rft_dat=%3Cgale_plos_%3EA587702459%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251079012&rft_id=info:pmid/31059513&rft_galeid=A587702459&rft_doaj_id=oai_doaj_org_article_247bbdd47ab9421ea8ebfd8e91ea35d6&rfr_iscdi=true |