Taming the giant within
[...]to blanks’s role in transcriptional efficacy in Y-loop B, heph mutants showed little change in nuclear RNA-FISH signals for kl-5 transcripts in Y-loop A. However, late SCs in heph mutant testes rarely displayed cytoplasmic granules containing kl-5, suggesting that heph function may be important...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2019-05, Vol.15 (5), p.e1008098-e1008098 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008098 |
---|---|
container_issue | 5 |
container_start_page | e1008098 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Bateman, Jack R Anderson, David J |
description | [...]to blanks’s role in transcriptional efficacy in Y-loop B, heph mutants showed little change in nuclear RNA-FISH signals for kl-5 transcripts in Y-loop A. However, late SCs in heph mutant testes rarely displayed cytoplasmic granules containing kl-5, suggesting that heph function may be important for a posttranscriptional step of kl-5 RNA processing. [...]exploration of this system may uncover other relevant players, with blanks and heph representing just part of a larger genetic program. Heph is required for a posttranscriptional step, such as RNA splicing, export, or stabilization, to permit accumulation of mature transcripts from fertility genes kl-3, kl-5, and ks-1 in cytoplasmic granules. pol II, RNA polymerase II; SC, spermatocyte. https://doi.org/10.1371/journal.pgen.1008098.g001 The study by Fingerhut and colleagues provides an early glimpse on how giant introns are dealt with during Drosophila spermatogenesis. Given the many hours required to complete transcription of each fertility gene, the authors speculate that they could function as developmental timers, perhaps ensuring that the interphase of SC development is sufficiently long to complete the cell growth and chromosome dynamics required prior to meiosis. |
doi_str_mv | 10.1371/journal.pgen.1008098 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251078940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587702508</galeid><doaj_id>oai_doaj_org_article_c5498b78bc65469cb14d76b98cab3a19</doaj_id><sourcerecordid>A587702508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-e9a8f2527daa5c5ffd393253b3cb90f476840fe324fc1eade9ceef7b2bde89913</originalsourceid><addsrcrecordid>eNqVks-L1DAUx4so7g89exEdEEQPMyZN0yQXYVn8MbC4oKvXkKYvbYZOMjapq_-9qdNdprIHJYeEl8_7vp9Z9hSjFSYMv9n4oXeqW-0acCuMEEeC38uOMaVkyQpU3D94H2UnIWwQIpQL9jA7IhgxjDg5zp5cqa11zSK2sGiscnFxbWNr3aPsgVFdgMfTfZp9ff_u6vzj8uLyw_r87GKpS0bjEoTiJqc5q5WimhpTE0FySiqiK4FMwUpeIAMkL4zGoGoQGsCwKq9q4EJgcpo93-vuOh_kVFOQeU5TilwUKBHrPVF7tZG73m5V_0t6ZeUfg-8bqfpodQdS00LwivFKl7Qoha5wUbOyElyriigsktbbKdpQbaHW4GKvupno_MfZVjb-hywp4iUmSeDVJND77wOEKLc2aOg65cAPY94Ejw3Ix8pe_IXeXd1ENSoVYJ3xKa4eReUZ5YyhPEVO1OoOKp0atlZ7B8Ym-8zh9cwhMRF-xkYNIcj1l8__wX76d_by25x9ecC2oLrYBt8N0XoX5mCxB3XvQ-jB3A4EIznu-k3n5Ljrctr15PbscJi3TjfLTX4DPy72PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251078940</pqid></control><display><type>article</type><title>Taming the giant within</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Bateman, Jack R ; Anderson, David J</creator><contributor>Bosco, Giovanni</contributor><creatorcontrib>Bateman, Jack R ; Anderson, David J ; Bosco, Giovanni</creatorcontrib><description>[...]to blanks’s role in transcriptional efficacy in Y-loop B, heph mutants showed little change in nuclear RNA-FISH signals for kl-5 transcripts in Y-loop A. However, late SCs in heph mutant testes rarely displayed cytoplasmic granules containing kl-5, suggesting that heph function may be important for a posttranscriptional step of kl-5 RNA processing. [...]exploration of this system may uncover other relevant players, with blanks and heph representing just part of a larger genetic program. Heph is required for a posttranscriptional step, such as RNA splicing, export, or stabilization, to permit accumulation of mature transcripts from fertility genes kl-3, kl-5, and ks-1 in cytoplasmic granules. pol II, RNA polymerase II; SC, spermatocyte. https://doi.org/10.1371/journal.pgen.1008098.g001 The study by Fingerhut and colleagues provides an early glimpse on how giant introns are dealt with during Drosophila spermatogenesis. Given the many hours required to complete transcription of each fertility gene, the authors speculate that they could function as developmental timers, perhaps ensuring that the interphase of SC development is sufficiently long to complete the cell growth and chromosome dynamics required prior to meiosis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008098</identifier><identifier>PMID: 31071083</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and life sciences ; Cell cycle ; Chromosomes ; DNA ; DNA, Satellite ; DNA-directed RNA polymerase ; Drosophila ; Gene expression ; Genetic research ; Genetics ; Insects ; Introns ; Male ; Medicine and Health Sciences ; Meiosis ; Methods ; Post-transcription ; Proteins ; Research and Analysis Methods ; RNA processing ; RNA transport ; Sperm ; Spermatogenesis ; Splicing</subject><ispartof>PLoS genetics, 2019-05, Vol.15 (5), p.e1008098-e1008098</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Bateman, Anderson. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Bateman, Anderson 2019 Bateman, Anderson</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c675t-e9a8f2527daa5c5ffd393253b3cb90f476840fe324fc1eade9ceef7b2bde89913</cites><orcidid>0000-0002-8782-5958 ; 0000-0001-6127-4636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31071083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bosco, Giovanni</contributor><creatorcontrib>Bateman, Jack R</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><title>Taming the giant within</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>[...]to blanks’s role in transcriptional efficacy in Y-loop B, heph mutants showed little change in nuclear RNA-FISH signals for kl-5 transcripts in Y-loop A. However, late SCs in heph mutant testes rarely displayed cytoplasmic granules containing kl-5, suggesting that heph function may be important for a posttranscriptional step of kl-5 RNA processing. [...]exploration of this system may uncover other relevant players, with blanks and heph representing just part of a larger genetic program. Heph is required for a posttranscriptional step, such as RNA splicing, export, or stabilization, to permit accumulation of mature transcripts from fertility genes kl-3, kl-5, and ks-1 in cytoplasmic granules. pol II, RNA polymerase II; SC, spermatocyte. https://doi.org/10.1371/journal.pgen.1008098.g001 The study by Fingerhut and colleagues provides an early glimpse on how giant introns are dealt with during Drosophila spermatogenesis. Given the many hours required to complete transcription of each fertility gene, the authors speculate that they could function as developmental timers, perhaps ensuring that the interphase of SC development is sufficiently long to complete the cell growth and chromosome dynamics required prior to meiosis.</description><subject>Animals</subject><subject>Biology and life sciences</subject><subject>Cell cycle</subject><subject>Chromosomes</subject><subject>DNA</subject><subject>DNA, Satellite</subject><subject>DNA-directed RNA polymerase</subject><subject>Drosophila</subject><subject>Gene expression</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Insects</subject><subject>Introns</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Meiosis</subject><subject>Methods</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>RNA processing</subject><subject>RNA transport</subject><subject>Sperm</subject><subject>Spermatogenesis</subject><subject>Splicing</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVks-L1DAUx4so7g89exEdEEQPMyZN0yQXYVn8MbC4oKvXkKYvbYZOMjapq_-9qdNdprIHJYeEl8_7vp9Z9hSjFSYMv9n4oXeqW-0acCuMEEeC38uOMaVkyQpU3D94H2UnIWwQIpQL9jA7IhgxjDg5zp5cqa11zSK2sGiscnFxbWNr3aPsgVFdgMfTfZp9ff_u6vzj8uLyw_r87GKpS0bjEoTiJqc5q5WimhpTE0FySiqiK4FMwUpeIAMkL4zGoGoQGsCwKq9q4EJgcpo93-vuOh_kVFOQeU5TilwUKBHrPVF7tZG73m5V_0t6ZeUfg-8bqfpodQdS00LwivFKl7Qoha5wUbOyElyriigsktbbKdpQbaHW4GKvupno_MfZVjb-hywp4iUmSeDVJND77wOEKLc2aOg65cAPY94Ejw3Ix8pe_IXeXd1ENSoVYJ3xKa4eReUZ5YyhPEVO1OoOKp0atlZ7B8Ym-8zh9cwhMRF-xkYNIcj1l8__wX76d_by25x9ecC2oLrYBt8N0XoX5mCxB3XvQ-jB3A4EIznu-k3n5Ljrctr15PbscJi3TjfLTX4DPy72PA</recordid><startdate>20190509</startdate><enddate>20190509</enddate><creator>Bateman, Jack R</creator><creator>Anderson, David J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8782-5958</orcidid><orcidid>https://orcid.org/0000-0001-6127-4636</orcidid></search><sort><creationdate>20190509</creationdate><title>Taming the giant within</title><author>Bateman, Jack R ; Anderson, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-e9a8f2527daa5c5ffd393253b3cb90f476840fe324fc1eade9ceef7b2bde89913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biology and life sciences</topic><topic>Cell cycle</topic><topic>Chromosomes</topic><topic>DNA</topic><topic>DNA, Satellite</topic><topic>DNA-directed RNA polymerase</topic><topic>Drosophila</topic><topic>Gene expression</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Insects</topic><topic>Introns</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Meiosis</topic><topic>Methods</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>RNA processing</topic><topic>RNA transport</topic><topic>Sperm</topic><topic>Spermatogenesis</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bateman, Jack R</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bateman, Jack R</au><au>Anderson, David J</au><au>Bosco, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming the giant within</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-05-09</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>e1008098</spage><epage>e1008098</epage><pages>e1008098-e1008098</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>[...]to blanks’s role in transcriptional efficacy in Y-loop B, heph mutants showed little change in nuclear RNA-FISH signals for kl-5 transcripts in Y-loop A. However, late SCs in heph mutant testes rarely displayed cytoplasmic granules containing kl-5, suggesting that heph function may be important for a posttranscriptional step of kl-5 RNA processing. [...]exploration of this system may uncover other relevant players, with blanks and heph representing just part of a larger genetic program. Heph is required for a posttranscriptional step, such as RNA splicing, export, or stabilization, to permit accumulation of mature transcripts from fertility genes kl-3, kl-5, and ks-1 in cytoplasmic granules. pol II, RNA polymerase II; SC, spermatocyte. https://doi.org/10.1371/journal.pgen.1008098.g001 The study by Fingerhut and colleagues provides an early glimpse on how giant introns are dealt with during Drosophila spermatogenesis. Given the many hours required to complete transcription of each fertility gene, the authors speculate that they could function as developmental timers, perhaps ensuring that the interphase of SC development is sufficiently long to complete the cell growth and chromosome dynamics required prior to meiosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31071083</pmid><doi>10.1371/journal.pgen.1008098</doi><orcidid>https://orcid.org/0000-0002-8782-5958</orcidid><orcidid>https://orcid.org/0000-0001-6127-4636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-05, Vol.15 (5), p.e1008098-e1008098 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251078940 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Animals Biology and life sciences Cell cycle Chromosomes DNA DNA, Satellite DNA-directed RNA polymerase Drosophila Gene expression Genetic research Genetics Insects Introns Male Medicine and Health Sciences Meiosis Methods Post-transcription Proteins Research and Analysis Methods RNA processing RNA transport Sperm Spermatogenesis Splicing |
title | Taming the giant within |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20the%20giant%20within&rft.jtitle=PLoS%20genetics&rft.au=Bateman,%20Jack%20R&rft.date=2019-05-09&rft.volume=15&rft.issue=5&rft.spage=e1008098&rft.epage=e1008098&rft.pages=e1008098-e1008098&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008098&rft_dat=%3Cgale_plos_%3EA587702508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251078940&rft_id=info:pmid/31071083&rft_galeid=A587702508&rft_doaj_id=oai_doaj_org_article_c5498b78bc65469cb14d76b98cab3a19&rfr_iscdi=true |