Destabilization of chromosome structure by histone H3 lysine 27 methylation

Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria trit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2019-04, Vol.15 (4), p.e1008093
Hauptverfasser: Möller, Mareike, Schotanus, Klaas, Soyer, Jessica L, Haueisen, Janine, Happ, Kathrin, Stralucke, Maja, Happel, Petra, Smith, Kristina M, Connolly, Lanelle R, Freitag, Michael, Stukenbrock, Eva H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e1008093
container_title PLoS genetics
container_volume 15
creator Möller, Mareike
Schotanus, Klaas
Soyer, Jessica L
Haueisen, Janine
Happ, Kathrin
Stralucke, Maja
Happel, Petra
Smith, Kristina M
Connolly, Lanelle R
Freitag, Michael
Stukenbrock, Eva H
description Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.
doi_str_mv 10.1371/journal.pgen.1008093
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251047183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584292759</galeid><doaj_id>oai_doaj_org_article_c058d309a16c4ae3b8ba6dcc358d662a</doaj_id><sourcerecordid>A584292759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-e9033ad33e471ca39496edeac37e05a1d0488e5243233d47c4178cbae804131c3</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYqPwDxBEQkLsosWOndi5QarGRysqJvF1a7nOaePJiYvtTJRfj7NmUzPtApSLWCfP-9p-T06SPMdohgnDby9t51ppZrsttDOMEEcleZCc4jwnU0YRfXi0PkmeeH-JEMl5yR4nJyTyJS2y0-Tze_BBrrXRf2TQtk3tJlW1s431toHUB9ep0DlI1_u01j7YFtIFSc3e67jKWNpAqPfmWvs0ebSRxsOz4T1Jfnz88P18MV1dfFqez1dTxQoUplAiQmRFCFCGlSQlLQuoQCrCAOUSV4hyDnlGSUZIRZmimHG1lsARxQQrMkleHnx3xnox5OBFluUYRUtOIrE8EJWVl2LndCPdXlipxXXBuq2QLmhlQCiU84qgUuJCUQlkzdeyqJSKUVVFkcno9W7YrVs3UClog5NmZDr-0upabO2VKPrj0CIanB0M6juyxXwl-hrKCswKxq9wZN8Mmzn7q4utEY32CoyRLdiuv2NMgHIWo5kkr-6g9ycxUFsZL6vbjY1nVL2pmOecZmXG8jJSs3uo-FTQaBV7vtGxPhKcjQSRCfA7bGXnvVh--_of7Jd_Zy9-jtnXR2wN0oTaW9P1v6Ifg_QAKme9d7C57QJGop-lm-REP0timKUoe3Hc-FvRzfCQvzvtFnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251047183</pqid></control><display><type>article</type><title>Destabilization of chromosome structure by histone H3 lysine 27 methylation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Möller, Mareike ; Schotanus, Klaas ; Soyer, Jessica L ; Haueisen, Janine ; Happ, Kathrin ; Stralucke, Maja ; Happel, Petra ; Smith, Kristina M ; Connolly, Lanelle R ; Freitag, Michael ; Stukenbrock, Eva H</creator><creatorcontrib>Möller, Mareike ; Schotanus, Klaas ; Soyer, Jessica L ; Haueisen, Janine ; Happ, Kathrin ; Stralucke, Maja ; Happel, Petra ; Smith, Kristina M ; Connolly, Lanelle R ; Freitag, Michael ; Stukenbrock, Eva H</creatorcontrib><description>Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1008093</identifier><identifier>PMID: 31009462</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Ascomycota - genetics ; Ascomycota - metabolism ; Biochemistry ; Bioinformatics ; Biology and Life Sciences ; Biophysics ; Chromatin ; Chromosomes ; Chromosomes, Fungal ; Computer and Information Sciences ; Data analysis ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA repair ; DNA sequencing ; Environmental Sciences ; Evolutionary biology ; Fungi ; Gene Deletion ; Gene expression ; Genomes ; Genomic analysis ; Genomic Instability ; Genomics ; Growth conditions ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; Histone H3 ; Histone-Lysine N-Methyltransferase - genetics ; Histones ; Histones - chemistry ; Histones - metabolism ; Life Sciences ; Lysine ; Lysine - metabolism ; Meiosis ; Methylation ; Methyltransferases ; Mitosis ; Parameter estimation ; Physiological aspects ; Repetitive Sequences, Nucleic Acid ; Ribonucleic acid ; RNA ; Strains (organisms) ; Supernumerary ; Transcription ; Transcriptional Activation ; Transposons</subject><ispartof>PLoS genetics, 2019-04, Vol.15 (4), p.e1008093</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Möller et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2019 Möller et al 2019 Möller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-e9033ad33e471ca39496edeac37e05a1d0488e5243233d47c4178cbae804131c3</citedby><cites>FETCH-LOGICAL-c760t-e9033ad33e471ca39496edeac37e05a1d0488e5243233d47c4178cbae804131c3</cites><orcidid>0000-0002-2146-5507 ; 0000-0001-8590-3345 ; 0000-0003-3178-9588 ; 0000-0002-9424-1053 ; 0000-0001-5040-0705 ; 0000-0001-7258-2116 ; 0000-0003-1174-8252 ; 0000-0002-0974-2882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31009462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02617678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Möller, Mareike</creatorcontrib><creatorcontrib>Schotanus, Klaas</creatorcontrib><creatorcontrib>Soyer, Jessica L</creatorcontrib><creatorcontrib>Haueisen, Janine</creatorcontrib><creatorcontrib>Happ, Kathrin</creatorcontrib><creatorcontrib>Stralucke, Maja</creatorcontrib><creatorcontrib>Happel, Petra</creatorcontrib><creatorcontrib>Smith, Kristina M</creatorcontrib><creatorcontrib>Connolly, Lanelle R</creatorcontrib><creatorcontrib>Freitag, Michael</creatorcontrib><creatorcontrib>Stukenbrock, Eva H</creatorcontrib><title>Destabilization of chromosome structure by histone H3 lysine 27 methylation</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.</description><subject>Analysis</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - metabolism</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>DNA sequencing</subject><subject>Environmental Sciences</subject><subject>Evolutionary biology</subject><subject>Fungi</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Growth conditions</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>Histone H3</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Meiosis</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mitosis</subject><subject>Parameter estimation</subject><subject>Physiological aspects</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Strains (organisms)</subject><subject>Supernumerary</subject><subject>Transcription</subject><subject>Transcriptional Activation</subject><subject>Transposons</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYqPwDxBEQkLsosWOndi5QarGRysqJvF1a7nOaePJiYvtTJRfj7NmUzPtApSLWCfP-9p-T06SPMdohgnDby9t51ppZrsttDOMEEcleZCc4jwnU0YRfXi0PkmeeH-JEMl5yR4nJyTyJS2y0-Tze_BBrrXRf2TQtk3tJlW1s431toHUB9ep0DlI1_u01j7YFtIFSc3e67jKWNpAqPfmWvs0ebSRxsOz4T1Jfnz88P18MV1dfFqez1dTxQoUplAiQmRFCFCGlSQlLQuoQCrCAOUSV4hyDnlGSUZIRZmimHG1lsARxQQrMkleHnx3xnox5OBFluUYRUtOIrE8EJWVl2LndCPdXlipxXXBuq2QLmhlQCiU84qgUuJCUQlkzdeyqJSKUVVFkcno9W7YrVs3UClog5NmZDr-0upabO2VKPrj0CIanB0M6juyxXwl-hrKCswKxq9wZN8Mmzn7q4utEY32CoyRLdiuv2NMgHIWo5kkr-6g9ycxUFsZL6vbjY1nVL2pmOecZmXG8jJSs3uo-FTQaBV7vtGxPhKcjQSRCfA7bGXnvVh--_of7Jd_Zy9-jtnXR2wN0oTaW9P1v6Ifg_QAKme9d7C57QJGop-lm-REP0timKUoe3Hc-FvRzfCQvzvtFnw</recordid><startdate>20190422</startdate><enddate>20190422</enddate><creator>Möller, Mareike</creator><creator>Schotanus, Klaas</creator><creator>Soyer, Jessica L</creator><creator>Haueisen, Janine</creator><creator>Happ, Kathrin</creator><creator>Stralucke, Maja</creator><creator>Happel, Petra</creator><creator>Smith, Kristina M</creator><creator>Connolly, Lanelle R</creator><creator>Freitag, Michael</creator><creator>Stukenbrock, Eva H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2146-5507</orcidid><orcidid>https://orcid.org/0000-0001-8590-3345</orcidid><orcidid>https://orcid.org/0000-0003-3178-9588</orcidid><orcidid>https://orcid.org/0000-0002-9424-1053</orcidid><orcidid>https://orcid.org/0000-0001-5040-0705</orcidid><orcidid>https://orcid.org/0000-0001-7258-2116</orcidid><orcidid>https://orcid.org/0000-0003-1174-8252</orcidid><orcidid>https://orcid.org/0000-0002-0974-2882</orcidid></search><sort><creationdate>20190422</creationdate><title>Destabilization of chromosome structure by histone H3 lysine 27 methylation</title><author>Möller, Mareike ; Schotanus, Klaas ; Soyer, Jessica L ; Haueisen, Janine ; Happ, Kathrin ; Stralucke, Maja ; Happel, Petra ; Smith, Kristina M ; Connolly, Lanelle R ; Freitag, Michael ; Stukenbrock, Eva H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-e9033ad33e471ca39496edeac37e05a1d0488e5243233d47c4178cbae804131c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - metabolism</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>DNA sequencing</topic><topic>Environmental Sciences</topic><topic>Evolutionary biology</topic><topic>Fungi</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Growth conditions</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>Histone H3</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Meiosis</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mitosis</topic><topic>Parameter estimation</topic><topic>Physiological aspects</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Strains (organisms)</topic><topic>Supernumerary</topic><topic>Transcription</topic><topic>Transcriptional Activation</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, Mareike</creatorcontrib><creatorcontrib>Schotanus, Klaas</creatorcontrib><creatorcontrib>Soyer, Jessica L</creatorcontrib><creatorcontrib>Haueisen, Janine</creatorcontrib><creatorcontrib>Happ, Kathrin</creatorcontrib><creatorcontrib>Stralucke, Maja</creatorcontrib><creatorcontrib>Happel, Petra</creatorcontrib><creatorcontrib>Smith, Kristina M</creatorcontrib><creatorcontrib>Connolly, Lanelle R</creatorcontrib><creatorcontrib>Freitag, Michael</creatorcontrib><creatorcontrib>Stukenbrock, Eva H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, Mareike</au><au>Schotanus, Klaas</au><au>Soyer, Jessica L</au><au>Haueisen, Janine</au><au>Happ, Kathrin</au><au>Stralucke, Maja</au><au>Happel, Petra</au><au>Smith, Kristina M</au><au>Connolly, Lanelle R</au><au>Freitag, Michael</au><au>Stukenbrock, Eva H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Destabilization of chromosome structure by histone H3 lysine 27 methylation</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-04-22</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>e1008093</spage><pages>e1008093-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31009462</pmid><doi>10.1371/journal.pgen.1008093</doi><orcidid>https://orcid.org/0000-0002-2146-5507</orcidid><orcidid>https://orcid.org/0000-0001-8590-3345</orcidid><orcidid>https://orcid.org/0000-0003-3178-9588</orcidid><orcidid>https://orcid.org/0000-0002-9424-1053</orcidid><orcidid>https://orcid.org/0000-0001-5040-0705</orcidid><orcidid>https://orcid.org/0000-0001-7258-2116</orcidid><orcidid>https://orcid.org/0000-0003-1174-8252</orcidid><orcidid>https://orcid.org/0000-0002-0974-2882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2019-04, Vol.15 (4), p.e1008093
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2251047183
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Analysis
Ascomycota - genetics
Ascomycota - metabolism
Biochemistry
Bioinformatics
Biology and Life Sciences
Biophysics
Chromatin
Chromosomes
Chromosomes, Fungal
Computer and Information Sciences
Data analysis
Deoxyribonucleic acid
DNA
DNA methylation
DNA repair
DNA sequencing
Environmental Sciences
Evolutionary biology
Fungi
Gene Deletion
Gene expression
Genomes
Genomic analysis
Genomic Instability
Genomics
Growth conditions
Heterochromatin
Heterochromatin - genetics
Heterochromatin - metabolism
Histone H3
Histone-Lysine N-Methyltransferase - genetics
Histones
Histones - chemistry
Histones - metabolism
Life Sciences
Lysine
Lysine - metabolism
Meiosis
Methylation
Methyltransferases
Mitosis
Parameter estimation
Physiological aspects
Repetitive Sequences, Nucleic Acid
Ribonucleic acid
RNA
Strains (organisms)
Supernumerary
Transcription
Transcriptional Activation
Transposons
title Destabilization of chromosome structure by histone H3 lysine 27 methylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Destabilization%20of%20chromosome%20structure%20by%20histone%20H3%20lysine%2027%20methylation&rft.jtitle=PLoS%20genetics&rft.au=M%C3%B6ller,%20Mareike&rft.date=2019-04-22&rft.volume=15&rft.issue=4&rft.spage=e1008093&rft.pages=e1008093-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1008093&rft_dat=%3Cgale_plos_%3EA584292759%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251047183&rft_id=info:pmid/31009462&rft_galeid=A584292759&rft_doaj_id=oai_doaj_org_article_c058d309a16c4ae3b8ba6dcc358d662a&rfr_iscdi=true