Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish

Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2019-02, Vol.15 (2), p.e1007941
Hauptverfasser: Camargo-Sosa, Karen, Colanesi, Sarah, Müller, Jeanette, Schulte-Merker, Stefan, Stemple, Derek, Patton, E Elizabeth, Kelsh, Robert N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e1007941
container_title PLoS genetics
container_volume 15
creator Camargo-Sosa, Karen
Colanesi, Sarah
Müller, Jeanette
Schulte-Merker, Stefan
Stemple, Derek
Patton, E Elizabeth
Kelsh, Robert N
description Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.
doi_str_mv 10.1371/journal.pgen.1007941
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251042144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576572644</galeid><doaj_id>oai_doaj_org_article_76994c0aecaf4371ac7e04b39e324579</doaj_id><sourcerecordid>A576572644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4so3nn6H4gWBNGHXZM0_fUiLMeqC4cH_noNSTrpZukmNUlF_etNd3vHVu5B6UOSyWe-M5npJMlTjJY4K_GbnR2c4d2yb8EsMUJlTfG95BznebYoKaL3T_ZnySPvdwhleVWXD5OzDFUYZxU6T8LaNDZsodMmdSChD9alKx737dDxAD7tne20AseDtiblpkkbreIZTNBHm1Xp2olFAz2YJprTXrf7w-psTE5HSZ9G_d8gHFfabx8nDxTvPDyZ1ovk67v1l8sPi6vr95vL1dVClqQIC4FVnueFUIIUnKhakorTIqOEC1lThUUlqRCSK5GTqsEY1UWTU1kLwQFXBc8ukudH3b6znk0F84yQHCNKMKWR2ByJxvId653ec_eLWa7ZwWBdy7gLWnbAyqKuqUQcYkAaG8BlCYiKrIaM0Lyso9bbKdog9tDIWAHHu5no_MboLWvtD1ZkNSHlmMyrScDZ7wP4wPbaS-g6bsAOMW9clYiUmI6xXvyF3v26iWp5fIA2ysa4chRlq7ws8ljlA7W8g4pfA3strQGlo33m8HrmEJkAP0PLB-_Z5vOn_2A__jt7_W3Ovjxht8C7sPW2G8Yf0s9BegSls947ULcNwYiNg3RTOTYOEpsGKbo9O23mrdPN5GR_AI3uGdc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251042144</pqid></control><display><type>article</type><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N</creator><contributor>Parichy, David M.</contributor><creatorcontrib>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N ; Parichy, David M.</creatorcontrib><description>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007941</identifier><identifier>PMID: 30811380</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult Stem Cells - cytology ; Adult Stem Cells - metabolism ; Animals ; Biochemistry ; Biology ; Biology and Life Sciences ; Blood vessels ; Camouflage ; Cell cycle ; Cell Differentiation ; Cell Proliferation ; Cell receptors ; Danio rerio ; Embryo ; Embryonic development ; Endothelin ; Endothelins ; ErbB protein ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - metabolism ; Funding ; Genetic aspects ; Genetic screening ; Genetic testing ; Genomes ; Government contracts ; Medicine ; Medicine and Health Sciences ; Melanocytes ; Melanocytes - cytology ; Melanocytes - metabolism ; Melanophores - cytology ; Melanophores - metabolism ; Metamorphosis ; Methods ; Models, Biological ; Mutation ; Neural crest ; Neural Crest - cytology ; Neural Crest - metabolism ; Neural stem cells ; Neurons ; Novels ; Phenotype ; Phenotypes ; Physical Sciences ; Physiological aspects ; Pigments, Biological - metabolism ; Receptor, Endothelin A - genetics ; Receptor, Endothelin A - metabolism ; Reptiles &amp; amphibians ; Research and Analysis Methods ; Signal Transduction ; Skin ; Skin color ; Skin Pigmentation - genetics ; Stem cell transplantation ; Stem cells ; Sunscreening agents ; Supernumerary ; Supervision ; Sympathetic nerves ; Zebrafish ; Zebrafish - genetics ; Zebrafish - growth &amp; development ; Zebrafish - metabolism ; Zebrafish Proteins - antagonists &amp; inhibitors ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>PLoS genetics, 2019-02, Vol.15 (2), p.e1007941</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Camargo-Sosa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Camargo-Sosa et al 2019 Camargo-Sosa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</citedby><cites>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</cites><orcidid>0000-0003-3617-8807 ; 0000-0002-9803-6372 ; 0000-0002-8296-9928 ; 0000-0002-9381-0066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392274/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392274/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30811380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Parichy, David M.</contributor><creatorcontrib>Camargo-Sosa, Karen</creatorcontrib><creatorcontrib>Colanesi, Sarah</creatorcontrib><creatorcontrib>Müller, Jeanette</creatorcontrib><creatorcontrib>Schulte-Merker, Stefan</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Patton, E Elizabeth</creatorcontrib><creatorcontrib>Kelsh, Robert N</creatorcontrib><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</description><subject>Adult Stem Cells - cytology</subject><subject>Adult Stem Cells - metabolism</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Blood vessels</subject><subject>Camouflage</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell receptors</subject><subject>Danio rerio</subject><subject>Embryo</subject><subject>Embryonic development</subject><subject>Endothelin</subject><subject>Endothelins</subject><subject>ErbB protein</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - metabolism</subject><subject>Funding</subject><subject>Genetic aspects</subject><subject>Genetic screening</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Government contracts</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Melanocytes</subject><subject>Melanocytes - cytology</subject><subject>Melanocytes - metabolism</subject><subject>Melanophores - cytology</subject><subject>Melanophores - metabolism</subject><subject>Metamorphosis</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - metabolism</subject><subject>Neural stem cells</subject><subject>Neurons</subject><subject>Novels</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Pigments, Biological - metabolism</subject><subject>Receptor, Endothelin A - genetics</subject><subject>Receptor, Endothelin A - metabolism</subject><subject>Reptiles &amp; amphibians</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Skin</subject><subject>Skin color</subject><subject>Skin Pigmentation - genetics</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Sunscreening agents</subject><subject>Supernumerary</subject><subject>Supervision</subject><subject>Sympathetic nerves</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth &amp; development</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - antagonists &amp; inhibitors</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4so3nn6H4gWBNGHXZM0_fUiLMeqC4cH_noNSTrpZukmNUlF_etNd3vHVu5B6UOSyWe-M5npJMlTjJY4K_GbnR2c4d2yb8EsMUJlTfG95BznebYoKaL3T_ZnySPvdwhleVWXD5OzDFUYZxU6T8LaNDZsodMmdSChD9alKx737dDxAD7tne20AseDtiblpkkbreIZTNBHm1Xp2olFAz2YJprTXrf7w-psTE5HSZ9G_d8gHFfabx8nDxTvPDyZ1ovk67v1l8sPi6vr95vL1dVClqQIC4FVnueFUIIUnKhakorTIqOEC1lThUUlqRCSK5GTqsEY1UWTU1kLwQFXBc8ukudH3b6znk0F84yQHCNKMKWR2ByJxvId653ec_eLWa7ZwWBdy7gLWnbAyqKuqUQcYkAaG8BlCYiKrIaM0Lyso9bbKdog9tDIWAHHu5no_MboLWvtD1ZkNSHlmMyrScDZ7wP4wPbaS-g6bsAOMW9clYiUmI6xXvyF3v26iWp5fIA2ysa4chRlq7ws8ljlA7W8g4pfA3strQGlo33m8HrmEJkAP0PLB-_Z5vOn_2A__jt7_W3Ovjxht8C7sPW2G8Yf0s9BegSls947ULcNwYiNg3RTOTYOEpsGKbo9O23mrdPN5GR_AI3uGdc</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Camargo-Sosa, Karen</creator><creator>Colanesi, Sarah</creator><creator>Müller, Jeanette</creator><creator>Schulte-Merker, Stefan</creator><creator>Stemple, Derek</creator><creator>Patton, E Elizabeth</creator><creator>Kelsh, Robert N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3617-8807</orcidid><orcidid>https://orcid.org/0000-0002-9803-6372</orcidid><orcidid>https://orcid.org/0000-0002-8296-9928</orcidid><orcidid>https://orcid.org/0000-0002-9381-0066</orcidid></search><sort><creationdate>20190227</creationdate><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><author>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult Stem Cells - cytology</topic><topic>Adult Stem Cells - metabolism</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Blood vessels</topic><topic>Camouflage</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell receptors</topic><topic>Danio rerio</topic><topic>Embryo</topic><topic>Embryonic development</topic><topic>Endothelin</topic><topic>Endothelins</topic><topic>ErbB protein</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - metabolism</topic><topic>Funding</topic><topic>Genetic aspects</topic><topic>Genetic screening</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Government contracts</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Melanocytes</topic><topic>Melanocytes - cytology</topic><topic>Melanocytes - metabolism</topic><topic>Melanophores - cytology</topic><topic>Melanophores - metabolism</topic><topic>Metamorphosis</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - metabolism</topic><topic>Neural stem cells</topic><topic>Neurons</topic><topic>Novels</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Pigments, Biological - metabolism</topic><topic>Receptor, Endothelin A - genetics</topic><topic>Receptor, Endothelin A - metabolism</topic><topic>Reptiles &amp; amphibians</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Skin</topic><topic>Skin color</topic><topic>Skin Pigmentation - genetics</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Sunscreening agents</topic><topic>Supernumerary</topic><topic>Supervision</topic><topic>Sympathetic nerves</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth &amp; development</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - antagonists &amp; inhibitors</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camargo-Sosa, Karen</creatorcontrib><creatorcontrib>Colanesi, Sarah</creatorcontrib><creatorcontrib>Müller, Jeanette</creatorcontrib><creatorcontrib>Schulte-Merker, Stefan</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Patton, E Elizabeth</creatorcontrib><creatorcontrib>Kelsh, Robert N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camargo-Sosa, Karen</au><au>Colanesi, Sarah</au><au>Müller, Jeanette</au><au>Schulte-Merker, Stefan</au><au>Stemple, Derek</au><au>Patton, E Elizabeth</au><au>Kelsh, Robert N</au><au>Parichy, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>e1007941</spage><pages>e1007941-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30811380</pmid><doi>10.1371/journal.pgen.1007941</doi><orcidid>https://orcid.org/0000-0003-3617-8807</orcidid><orcidid>https://orcid.org/0000-0002-9803-6372</orcidid><orcidid>https://orcid.org/0000-0002-8296-9928</orcidid><orcidid>https://orcid.org/0000-0002-9381-0066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2019-02, Vol.15 (2), p.e1007941
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2251042144
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult Stem Cells - cytology
Adult Stem Cells - metabolism
Animals
Biochemistry
Biology
Biology and Life Sciences
Blood vessels
Camouflage
Cell cycle
Cell Differentiation
Cell Proliferation
Cell receptors
Danio rerio
Embryo
Embryonic development
Endothelin
Endothelins
ErbB protein
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - metabolism
Funding
Genetic aspects
Genetic screening
Genetic testing
Genomes
Government contracts
Medicine
Medicine and Health Sciences
Melanocytes
Melanocytes - cytology
Melanocytes - metabolism
Melanophores - cytology
Melanophores - metabolism
Metamorphosis
Methods
Models, Biological
Mutation
Neural crest
Neural Crest - cytology
Neural Crest - metabolism
Neural stem cells
Neurons
Novels
Phenotype
Phenotypes
Physical Sciences
Physiological aspects
Pigments, Biological - metabolism
Receptor, Endothelin A - genetics
Receptor, Endothelin A - metabolism
Reptiles & amphibians
Research and Analysis Methods
Signal Transduction
Skin
Skin color
Skin Pigmentation - genetics
Stem cell transplantation
Stem cells
Sunscreening agents
Supernumerary
Supervision
Sympathetic nerves
Zebrafish
Zebrafish - genetics
Zebrafish - growth & development
Zebrafish - metabolism
Zebrafish Proteins - antagonists & inhibitors
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelin%20receptor%20Aa%20regulates%20proliferation%20and%20differentiation%20of%20Erb-dependent%20pigment%20progenitors%20in%20zebrafish&rft.jtitle=PLoS%20genetics&rft.au=Camargo-Sosa,%20Karen&rft.date=2019-02-27&rft.volume=15&rft.issue=2&rft.spage=e1007941&rft.pages=e1007941-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007941&rft_dat=%3Cgale_plos_%3EA576572644%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251042144&rft_id=info:pmid/30811380&rft_galeid=A576572644&rft_doaj_id=oai_doaj_org_article_76994c0aecaf4371ac7e04b39e324579&rfr_iscdi=true