Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish
Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activat...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2019-02, Vol.15 (2), p.e1007941 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e1007941 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Camargo-Sosa, Karen Colanesi, Sarah Müller, Jeanette Schulte-Merker, Stefan Stemple, Derek Patton, E Elizabeth Kelsh, Robert N |
description | Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels. |
doi_str_mv | 10.1371/journal.pgen.1007941 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251042144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A576572644</galeid><doaj_id>oai_doaj_org_article_76994c0aecaf4371ac7e04b39e324579</doaj_id><sourcerecordid>A576572644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4so3nn6H4gWBNGHXZM0_fUiLMeqC4cH_noNSTrpZukmNUlF_etNd3vHVu5B6UOSyWe-M5npJMlTjJY4K_GbnR2c4d2yb8EsMUJlTfG95BznebYoKaL3T_ZnySPvdwhleVWXD5OzDFUYZxU6T8LaNDZsodMmdSChD9alKx737dDxAD7tne20AseDtiblpkkbreIZTNBHm1Xp2olFAz2YJprTXrf7w-psTE5HSZ9G_d8gHFfabx8nDxTvPDyZ1ovk67v1l8sPi6vr95vL1dVClqQIC4FVnueFUIIUnKhakorTIqOEC1lThUUlqRCSK5GTqsEY1UWTU1kLwQFXBc8ukudH3b6znk0F84yQHCNKMKWR2ByJxvId653ec_eLWa7ZwWBdy7gLWnbAyqKuqUQcYkAaG8BlCYiKrIaM0Lyso9bbKdog9tDIWAHHu5no_MboLWvtD1ZkNSHlmMyrScDZ7wP4wPbaS-g6bsAOMW9clYiUmI6xXvyF3v26iWp5fIA2ysa4chRlq7ws8ljlA7W8g4pfA3strQGlo33m8HrmEJkAP0PLB-_Z5vOn_2A__jt7_W3Ovjxht8C7sPW2G8Yf0s9BegSls947ULcNwYiNg3RTOTYOEpsGKbo9O23mrdPN5GR_AI3uGdc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251042144</pqid></control><display><type>article</type><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N</creator><contributor>Parichy, David M.</contributor><creatorcontrib>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N ; Parichy, David M.</creatorcontrib><description>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007941</identifier><identifier>PMID: 30811380</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult Stem Cells - cytology ; Adult Stem Cells - metabolism ; Animals ; Biochemistry ; Biology ; Biology and Life Sciences ; Blood vessels ; Camouflage ; Cell cycle ; Cell Differentiation ; Cell Proliferation ; Cell receptors ; Danio rerio ; Embryo ; Embryonic development ; Endothelin ; Endothelins ; ErbB protein ; ErbB Receptors - antagonists & inhibitors ; ErbB Receptors - metabolism ; Funding ; Genetic aspects ; Genetic screening ; Genetic testing ; Genomes ; Government contracts ; Medicine ; Medicine and Health Sciences ; Melanocytes ; Melanocytes - cytology ; Melanocytes - metabolism ; Melanophores - cytology ; Melanophores - metabolism ; Metamorphosis ; Methods ; Models, Biological ; Mutation ; Neural crest ; Neural Crest - cytology ; Neural Crest - metabolism ; Neural stem cells ; Neurons ; Novels ; Phenotype ; Phenotypes ; Physical Sciences ; Physiological aspects ; Pigments, Biological - metabolism ; Receptor, Endothelin A - genetics ; Receptor, Endothelin A - metabolism ; Reptiles & amphibians ; Research and Analysis Methods ; Signal Transduction ; Skin ; Skin color ; Skin Pigmentation - genetics ; Stem cell transplantation ; Stem cells ; Sunscreening agents ; Supernumerary ; Supervision ; Sympathetic nerves ; Zebrafish ; Zebrafish - genetics ; Zebrafish - growth & development ; Zebrafish - metabolism ; Zebrafish Proteins - antagonists & inhibitors ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>PLoS genetics, 2019-02, Vol.15 (2), p.e1007941</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Camargo-Sosa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Camargo-Sosa et al 2019 Camargo-Sosa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</citedby><cites>FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</cites><orcidid>0000-0003-3617-8807 ; 0000-0002-9803-6372 ; 0000-0002-8296-9928 ; 0000-0002-9381-0066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392274/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392274/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30811380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Parichy, David M.</contributor><creatorcontrib>Camargo-Sosa, Karen</creatorcontrib><creatorcontrib>Colanesi, Sarah</creatorcontrib><creatorcontrib>Müller, Jeanette</creatorcontrib><creatorcontrib>Schulte-Merker, Stefan</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Patton, E Elizabeth</creatorcontrib><creatorcontrib>Kelsh, Robert N</creatorcontrib><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</description><subject>Adult Stem Cells - cytology</subject><subject>Adult Stem Cells - metabolism</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Blood vessels</subject><subject>Camouflage</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell receptors</subject><subject>Danio rerio</subject><subject>Embryo</subject><subject>Embryonic development</subject><subject>Endothelin</subject><subject>Endothelins</subject><subject>ErbB protein</subject><subject>ErbB Receptors - antagonists & inhibitors</subject><subject>ErbB Receptors - metabolism</subject><subject>Funding</subject><subject>Genetic aspects</subject><subject>Genetic screening</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Government contracts</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Melanocytes</subject><subject>Melanocytes - cytology</subject><subject>Melanocytes - metabolism</subject><subject>Melanophores - cytology</subject><subject>Melanophores - metabolism</subject><subject>Metamorphosis</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - metabolism</subject><subject>Neural stem cells</subject><subject>Neurons</subject><subject>Novels</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Pigments, Biological - metabolism</subject><subject>Receptor, Endothelin A - genetics</subject><subject>Receptor, Endothelin A - metabolism</subject><subject>Reptiles & amphibians</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Skin</subject><subject>Skin color</subject><subject>Skin Pigmentation - genetics</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Sunscreening agents</subject><subject>Supernumerary</subject><subject>Supervision</subject><subject>Sympathetic nerves</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - growth & development</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - antagonists & inhibitors</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4so3nn6H4gWBNGHXZM0_fUiLMeqC4cH_noNSTrpZukmNUlF_etNd3vHVu5B6UOSyWe-M5npJMlTjJY4K_GbnR2c4d2yb8EsMUJlTfG95BznebYoKaL3T_ZnySPvdwhleVWXD5OzDFUYZxU6T8LaNDZsodMmdSChD9alKx737dDxAD7tne20AseDtiblpkkbreIZTNBHm1Xp2olFAz2YJprTXrf7w-psTE5HSZ9G_d8gHFfabx8nDxTvPDyZ1ovk67v1l8sPi6vr95vL1dVClqQIC4FVnueFUIIUnKhakorTIqOEC1lThUUlqRCSK5GTqsEY1UWTU1kLwQFXBc8ukudH3b6znk0F84yQHCNKMKWR2ByJxvId653ec_eLWa7ZwWBdy7gLWnbAyqKuqUQcYkAaG8BlCYiKrIaM0Lyso9bbKdog9tDIWAHHu5no_MboLWvtD1ZkNSHlmMyrScDZ7wP4wPbaS-g6bsAOMW9clYiUmI6xXvyF3v26iWp5fIA2ysa4chRlq7ws8ljlA7W8g4pfA3strQGlo33m8HrmEJkAP0PLB-_Z5vOn_2A__jt7_W3Ovjxht8C7sPW2G8Yf0s9BegSls947ULcNwYiNg3RTOTYOEpsGKbo9O23mrdPN5GR_AI3uGdc</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Camargo-Sosa, Karen</creator><creator>Colanesi, Sarah</creator><creator>Müller, Jeanette</creator><creator>Schulte-Merker, Stefan</creator><creator>Stemple, Derek</creator><creator>Patton, E Elizabeth</creator><creator>Kelsh, Robert N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3617-8807</orcidid><orcidid>https://orcid.org/0000-0002-9803-6372</orcidid><orcidid>https://orcid.org/0000-0002-8296-9928</orcidid><orcidid>https://orcid.org/0000-0002-9381-0066</orcidid></search><sort><creationdate>20190227</creationdate><title>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</title><author>Camargo-Sosa, Karen ; Colanesi, Sarah ; Müller, Jeanette ; Schulte-Merker, Stefan ; Stemple, Derek ; Patton, E Elizabeth ; Kelsh, Robert N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b1f5556bfb26a2f9c28a46342abc94f1b8c4bbcafb528d11096d54c9bbae186a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult Stem Cells - cytology</topic><topic>Adult Stem Cells - metabolism</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Blood vessels</topic><topic>Camouflage</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell receptors</topic><topic>Danio rerio</topic><topic>Embryo</topic><topic>Embryonic development</topic><topic>Endothelin</topic><topic>Endothelins</topic><topic>ErbB protein</topic><topic>ErbB Receptors - antagonists & inhibitors</topic><topic>ErbB Receptors - metabolism</topic><topic>Funding</topic><topic>Genetic aspects</topic><topic>Genetic screening</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Government contracts</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Melanocytes</topic><topic>Melanocytes - cytology</topic><topic>Melanocytes - metabolism</topic><topic>Melanophores - cytology</topic><topic>Melanophores - metabolism</topic><topic>Metamorphosis</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - metabolism</topic><topic>Neural stem cells</topic><topic>Neurons</topic><topic>Novels</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Pigments, Biological - metabolism</topic><topic>Receptor, Endothelin A - genetics</topic><topic>Receptor, Endothelin A - metabolism</topic><topic>Reptiles & amphibians</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Skin</topic><topic>Skin color</topic><topic>Skin Pigmentation - genetics</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Sunscreening agents</topic><topic>Supernumerary</topic><topic>Supervision</topic><topic>Sympathetic nerves</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - growth & development</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - antagonists & inhibitors</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camargo-Sosa, Karen</creatorcontrib><creatorcontrib>Colanesi, Sarah</creatorcontrib><creatorcontrib>Müller, Jeanette</creatorcontrib><creatorcontrib>Schulte-Merker, Stefan</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Patton, E Elizabeth</creatorcontrib><creatorcontrib>Kelsh, Robert N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camargo-Sosa, Karen</au><au>Colanesi, Sarah</au><au>Müller, Jeanette</au><au>Schulte-Merker, Stefan</au><au>Stemple, Derek</au><au>Patton, E Elizabeth</au><au>Kelsh, Robert N</au><au>Parichy, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>e1007941</spage><pages>e1007941-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30811380</pmid><doi>10.1371/journal.pgen.1007941</doi><orcidid>https://orcid.org/0000-0003-3617-8807</orcidid><orcidid>https://orcid.org/0000-0002-9803-6372</orcidid><orcidid>https://orcid.org/0000-0002-8296-9928</orcidid><orcidid>https://orcid.org/0000-0002-9381-0066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-02, Vol.15 (2), p.e1007941 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251042144 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Stem Cells - cytology Adult Stem Cells - metabolism Animals Biochemistry Biology Biology and Life Sciences Blood vessels Camouflage Cell cycle Cell Differentiation Cell Proliferation Cell receptors Danio rerio Embryo Embryonic development Endothelin Endothelins ErbB protein ErbB Receptors - antagonists & inhibitors ErbB Receptors - metabolism Funding Genetic aspects Genetic screening Genetic testing Genomes Government contracts Medicine Medicine and Health Sciences Melanocytes Melanocytes - cytology Melanocytes - metabolism Melanophores - cytology Melanophores - metabolism Metamorphosis Methods Models, Biological Mutation Neural crest Neural Crest - cytology Neural Crest - metabolism Neural stem cells Neurons Novels Phenotype Phenotypes Physical Sciences Physiological aspects Pigments, Biological - metabolism Receptor, Endothelin A - genetics Receptor, Endothelin A - metabolism Reptiles & amphibians Research and Analysis Methods Signal Transduction Skin Skin color Skin Pigmentation - genetics Stem cell transplantation Stem cells Sunscreening agents Supernumerary Supervision Sympathetic nerves Zebrafish Zebrafish - genetics Zebrafish - growth & development Zebrafish - metabolism Zebrafish Proteins - antagonists & inhibitors Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelin%20receptor%20Aa%20regulates%20proliferation%20and%20differentiation%20of%20Erb-dependent%20pigment%20progenitors%20in%20zebrafish&rft.jtitle=PLoS%20genetics&rft.au=Camargo-Sosa,%20Karen&rft.date=2019-02-27&rft.volume=15&rft.issue=2&rft.spage=e1007941&rft.pages=e1007941-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007941&rft_dat=%3Cgale_plos_%3EA576572644%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251042144&rft_id=info:pmid/30811380&rft_galeid=A576572644&rft_doaj_id=oai_doaj_org_article_76994c0aecaf4371ac7e04b39e324579&rfr_iscdi=true |