Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1)
Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervatio...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2019-03, Vol.15 (3), p.e1007857 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1007857 |
container_title | PLoS genetics |
container_volume | 15 |
creator | Liu, Yun Sugiura, Yoshie Chen, Fujun Lee, Kuo-Fen Ye, Qiaohong Lin, Weichun |
description | Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development. |
doi_str_mv | 10.1371/journal.pgen.1007857 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251041498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581096467</galeid><doaj_id>oai_doaj_org_article_ebd71f84e9634c14a6ccc2db407af491</doaj_id><sourcerecordid>A581096467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c752t-9777996b3788754aa2cd2b346bebaf32baf57a93f1099f15f13165f9870218a33</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBYQkLbRTs7duLkBml0wCJNHSoft5bjOGk21y52MtF7fjinNJsatAtQpMQ6ft7XPufkRNFLgqeEcnJ67XpvpZmuG22nBGOeJfxRdEiShE44w-zx3vogehbCNcY0yXL-NDqgOOOY0fgw-vXeOHXT2gaFG210Jw1a9UEZjc4vPi_C6WLjCVp7fattF5DVvXfb_d5Ij8LGynXQyLgQUGtB2EnboVWrNKp03aoWRNuNbrPWqCgKNAe9bnoDMYKOZ4vzydw35OR59KSWJugXw_co-vbxw9fZxeTy6lMxO7ucKJ7E3STnnOd5WlKeZTxhUsaqikvK0lKXsqYxvBIuc1oTnOc1SWpCSZrUOeQak0xSehS93vmu4cpiKGAQcZwQzAjLMyCKHVE5eS3Wvl1JvxFOtuJPwPlGSN-1UB-hy4qTOmM6TylThMlUKRVXJcNc1iwn4PVuOK0vV7pSUAwvzch0vGPbpWjcrUgZgWamYHA8GHj3o9ehE6s2KG2MtNr1cG-SQ4JpwmJA3_yFPpzdQDUSEmht7eBctTUVZ0kGVUtZyoGaPkDBU2lorbPQWYiPBCcjATCd_tk1sg9BFF8W_8HO_529-j5m3-6xSy1NtwzO9F3rbBiDbAcqD7-t1_V9QwgW28G6q5zYDpYYBgtkr_abeS-6myT6G0qVHA8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251041498</pqid></control><display><type>article</type><title>Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Liu, Yun ; Sugiura, Yoshie ; Chen, Fujun ; Lee, Kuo-Fen ; Ye, Qiaohong ; Lin, Weichun</creator><contributor>Cox, Gregory A.</contributor><creatorcontrib>Liu, Yun ; Sugiura, Yoshie ; Chen, Fujun ; Lee, Kuo-Fen ; Ye, Qiaohong ; Lin, Weichun ; Cox, Gregory A.</creatorcontrib><description>Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007857</identifier><identifier>PMID: 30870432</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetyltransferase ; Analysis ; Animals ; Axons - metabolism ; Biology and Life Sciences ; Calcium Channels, L-Type - genetics ; Choline ; Choline O-acetyltransferase ; Denervation ; Dihydropyridine ; Electrophysiology ; Genes ; Genetic engineering ; Humans ; Immunoglobulins ; Kinases ; Medicine and Health Sciences ; Mice ; Motor Neurons - metabolism ; Muscle Denervation ; Muscle function ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Musculoskeletal system ; Mutant mice ; Nerve endings ; Nerve Regeneration - genetics ; Neuregulin ; Neuregulin 1 ; Neuregulin-1 - genetics ; Neuromuscular Junction - genetics ; Neuromuscular junctions ; Neurons ; Neurosciences ; Physiological aspects ; Presynaptic Terminals - metabolism ; Proteins ; Receptors, Nicotinic - genetics ; Research and Analysis Methods ; Rodents ; Ryanodine Receptor Calcium Release Channel - genetics ; Ryanodine receptors ; Schwann cells ; Schwann Cells - metabolism ; Skeletal muscle ; SNAP-25 protein ; Synapses ; Synapses - genetics ; Synapses - physiology ; Synaptogenesis ; Synaptosomal-Associated Protein 25 - genetics</subject><ispartof>PLoS genetics, 2019-03, Vol.15 (3), p.e1007857</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Liu et al 2019 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c752t-9777996b3788754aa2cd2b346bebaf32baf57a93f1099f15f13165f9870218a33</citedby><cites>FETCH-LOGICAL-c752t-9777996b3788754aa2cd2b346bebaf32baf57a93f1099f15f13165f9870218a33</cites><orcidid>0000-0002-6806-3329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417856/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417856/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30870432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cox, Gregory A.</contributor><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sugiura, Yoshie</creatorcontrib><creatorcontrib>Chen, Fujun</creatorcontrib><creatorcontrib>Lee, Kuo-Fen</creatorcontrib><creatorcontrib>Ye, Qiaohong</creatorcontrib><creatorcontrib>Lin, Weichun</creatorcontrib><title>Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1)</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.</description><subject>Acetyltransferase</subject><subject>Analysis</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Calcium Channels, L-Type - genetics</subject><subject>Choline</subject><subject>Choline O-acetyltransferase</subject><subject>Denervation</subject><subject>Dihydropyridine</subject><subject>Electrophysiology</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Motor Neurons - metabolism</subject><subject>Muscle Denervation</subject><subject>Muscle function</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Musculoskeletal system</subject><subject>Mutant mice</subject><subject>Nerve endings</subject><subject>Nerve Regeneration - genetics</subject><subject>Neuregulin</subject><subject>Neuregulin 1</subject><subject>Neuregulin-1 - genetics</subject><subject>Neuromuscular Junction - genetics</subject><subject>Neuromuscular junctions</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Proteins</subject><subject>Receptors, Nicotinic - genetics</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Ryanodine Receptor Calcium Release Channel - genetics</subject><subject>Ryanodine receptors</subject><subject>Schwann cells</subject><subject>Schwann Cells - metabolism</subject><subject>Skeletal muscle</subject><subject>SNAP-25 protein</subject><subject>Synapses</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><subject>Synaptogenesis</subject><subject>Synaptosomal-Associated Protein 25 - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBYQkLbRTs7duLkBml0wCJNHSoft5bjOGk21y52MtF7fjinNJsatAtQpMQ6ft7XPufkRNFLgqeEcnJ67XpvpZmuG22nBGOeJfxRdEiShE44w-zx3vogehbCNcY0yXL-NDqgOOOY0fgw-vXeOHXT2gaFG210Jw1a9UEZjc4vPi_C6WLjCVp7fattF5DVvXfb_d5Ij8LGynXQyLgQUGtB2EnboVWrNKp03aoWRNuNbrPWqCgKNAe9bnoDMYKOZ4vzydw35OR59KSWJugXw_co-vbxw9fZxeTy6lMxO7ucKJ7E3STnnOd5WlKeZTxhUsaqikvK0lKXsqYxvBIuc1oTnOc1SWpCSZrUOeQak0xSehS93vmu4cpiKGAQcZwQzAjLMyCKHVE5eS3Wvl1JvxFOtuJPwPlGSN-1UB-hy4qTOmM6TylThMlUKRVXJcNc1iwn4PVuOK0vV7pSUAwvzch0vGPbpWjcrUgZgWamYHA8GHj3o9ehE6s2KG2MtNr1cG-SQ4JpwmJA3_yFPpzdQDUSEmht7eBctTUVZ0kGVUtZyoGaPkDBU2lorbPQWYiPBCcjATCd_tk1sg9BFF8W_8HO_529-j5m3-6xSy1NtwzO9F3rbBiDbAcqD7-t1_V9QwgW28G6q5zYDpYYBgtkr_abeS-6myT6G0qVHA8</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Liu, Yun</creator><creator>Sugiura, Yoshie</creator><creator>Chen, Fujun</creator><creator>Lee, Kuo-Fen</creator><creator>Ye, Qiaohong</creator><creator>Lin, Weichun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6806-3329</orcidid></search><sort><creationdate>20190314</creationdate><title>Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1)</title><author>Liu, Yun ; Sugiura, Yoshie ; Chen, Fujun ; Lee, Kuo-Fen ; Ye, Qiaohong ; Lin, Weichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c752t-9777996b3788754aa2cd2b346bebaf32baf57a93f1099f15f13165f9870218a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetyltransferase</topic><topic>Analysis</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Calcium Channels, L-Type - genetics</topic><topic>Choline</topic><topic>Choline O-acetyltransferase</topic><topic>Denervation</topic><topic>Dihydropyridine</topic><topic>Electrophysiology</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Motor Neurons - metabolism</topic><topic>Muscle Denervation</topic><topic>Muscle function</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Musculoskeletal system</topic><topic>Mutant mice</topic><topic>Nerve endings</topic><topic>Nerve Regeneration - genetics</topic><topic>Neuregulin</topic><topic>Neuregulin 1</topic><topic>Neuregulin-1 - genetics</topic><topic>Neuromuscular Junction - genetics</topic><topic>Neuromuscular junctions</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Proteins</topic><topic>Receptors, Nicotinic - genetics</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Ryanodine Receptor Calcium Release Channel - genetics</topic><topic>Ryanodine receptors</topic><topic>Schwann cells</topic><topic>Schwann Cells - metabolism</topic><topic>Skeletal muscle</topic><topic>SNAP-25 protein</topic><topic>Synapses</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><topic>Synaptogenesis</topic><topic>Synaptosomal-Associated Protein 25 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Sugiura, Yoshie</creatorcontrib><creatorcontrib>Chen, Fujun</creatorcontrib><creatorcontrib>Lee, Kuo-Fen</creatorcontrib><creatorcontrib>Ye, Qiaohong</creatorcontrib><creatorcontrib>Lin, Weichun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yun</au><au>Sugiura, Yoshie</au><au>Chen, Fujun</au><au>Lee, Kuo-Fen</au><au>Ye, Qiaohong</au><au>Lin, Weichun</au><au>Cox, Gregory A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1)</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2019-03-14</date><risdate>2019</risdate><volume>15</volume><issue>3</issue><spage>e1007857</spage><pages>e1007857-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30870432</pmid><doi>10.1371/journal.pgen.1007857</doi><orcidid>https://orcid.org/0000-0002-6806-3329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2019-03, Vol.15 (3), p.e1007857 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251041498 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Acetyltransferase Analysis Animals Axons - metabolism Biology and Life Sciences Calcium Channels, L-Type - genetics Choline Choline O-acetyltransferase Denervation Dihydropyridine Electrophysiology Genes Genetic engineering Humans Immunoglobulins Kinases Medicine and Health Sciences Mice Motor Neurons - metabolism Muscle Denervation Muscle function Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Musculoskeletal system Mutant mice Nerve endings Nerve Regeneration - genetics Neuregulin Neuregulin 1 Neuregulin-1 - genetics Neuromuscular Junction - genetics Neuromuscular junctions Neurons Neurosciences Physiological aspects Presynaptic Terminals - metabolism Proteins Receptors, Nicotinic - genetics Research and Analysis Methods Rodents Ryanodine Receptor Calcium Release Channel - genetics Ryanodine receptors Schwann cells Schwann Cells - metabolism Skeletal muscle SNAP-25 protein Synapses Synapses - genetics Synapses - physiology Synaptogenesis Synaptosomal-Associated Protein 25 - genetics |
title | Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocking%20skeletal%20muscle%20DHPRs/Ryr1%20prevents%20neuromuscular%20synapse%20loss%20in%20mutant%20mice%20deficient%20in%20type%20III%20Neuregulin%201%20(CRD-Nrg1)&rft.jtitle=PLoS%20genetics&rft.au=Liu,%20Yun&rft.date=2019-03-14&rft.volume=15&rft.issue=3&rft.spage=e1007857&rft.pages=e1007857-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007857&rft_dat=%3Cgale_plos_%3EA581096467%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251041498&rft_id=info:pmid/30870432&rft_galeid=A581096467&rft_doaj_id=oai_doaj_org_article_ebd71f84e9634c14a6ccc2db407af491&rfr_iscdi=true |