Bayesian multiple logistic regression for case-control GWAS

Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2018-12, Vol.14 (12), p.e1007856-e1007856
Hauptverfasser: Banerjee, Saikat, Zeng, Lingyao, Schunkert, Heribert, Söding, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007856
container_issue 12
container_start_page e1007856
container_title PLoS genetics
container_volume 14
creator Banerjee, Saikat
Zeng, Lingyao
Schunkert, Heribert
Söding, Johannes
description Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.
doi_str_mv 10.1371/journal.pgen.1007856
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251023665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568167856</galeid><doaj_id>oai_doaj_org_article_19cd8f384cb8424685498d32acf48735</doaj_id><sourcerecordid>A568167856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPluyoIwLroOLC64flyGTHrayZBpxqQV99-bOt1lKnuh9CIlec57zpuTk2VPMZpjWuA3G9-HVrv5roF2jhEqJBf3smPMOZ0VDLH7B_9H2aMYNwhRLsviYXZEES-FYOg4O32nryFa3ebb3nV25yB3vrGxsyYP0ASI0fo2r33IjY4wM77tgnf5-ffF1ePsQa1dhCfjepJ9_fD-y9nH2cXl-fJscTEzBRHdjArQlUa4MlBKJhAIDFjWSEhsYIVqZgojCC4oxkwyjojQHCpKSg6AjTD0JHu-1905H9XoOypCOEaECsETsdwTldcbtQt2q8O18tqqPxs-NEqHZMmBwqWpZE0lMyvJCBOSs1KmbNrUTBZ00Ho7ZutXW0hFJ8PaTUSnJ61dq8b_VGIomYgk8GoUCP5HD7FTWxsNOKdb8H2qGwvCSoo5SeiLv9C73Y1Uo5MB29Y-5TWDqFrwdItiaH2i5ndQ6atga1PboLZpfxLwehIwtBZ-dY3uY1TLq8__wX76d_by25R9ecCuQbtuHb3ru_To4hRke9AEH2OA-rYhGKlhHm5uTg3zoMZ5SGHPDpt5G3QzAPQ3djMCVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251023665</pqid></control><display><type>article</type><title>Bayesian multiple logistic regression for case-control GWAS</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes ; Epstein, Michael P.</creatorcontrib><description>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007856</identifier><identifier>PMID: 30596640</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Cardiovascular disease ; Case-Control Studies ; Computer Simulation ; Coronary Artery Disease - genetics ; Coronary vessels ; Deep learning ; Gene loci ; Genetic diversity ; Genetic Variation ; Genetics ; Genome-wide association studies ; Genome-Wide Association Study - statistics &amp; numerical data ; Genomes ; Genotype &amp; phenotype ; Genotypes ; Humans ; Likelihood Functions ; Logistic Models ; Logistic regression ; Medicine and Health Sciences ; Models, Genetic ; Multifactorial Inheritance ; Normal distribution ; Overtraining ; Phenotype ; Phenotypes ; Physical Sciences ; Polymorphism, Single Nucleotide ; Research and Analysis Methods ; Sampling ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Statistical analysis</subject><ispartof>PLoS genetics, 2018-12, Vol.14 (12), p.e1007856-e1007856</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Banerjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Banerjee et al 2018 Banerjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</citedby><cites>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</cites><orcidid>0000-0003-4437-8833 ; 0000-0001-9642-8244 ; 0000-0001-6428-3001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329526/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329526/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30596640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Banerjee, Saikat</creatorcontrib><creatorcontrib>Zeng, Lingyao</creatorcontrib><creatorcontrib>Schunkert, Heribert</creatorcontrib><creatorcontrib>Söding, Johannes</creatorcontrib><title>Bayesian multiple logistic regression for case-control GWAS</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Coronary Artery Disease - genetics</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Gene loci</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics &amp; numerical data</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Logistic regression</subject><subject>Medicine and Health Sciences</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance</subject><subject>Normal distribution</subject><subject>Overtraining</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPluyoIwLroOLC64flyGTHrayZBpxqQV99-bOt1lKnuh9CIlec57zpuTk2VPMZpjWuA3G9-HVrv5roF2jhEqJBf3smPMOZ0VDLH7B_9H2aMYNwhRLsviYXZEES-FYOg4O32nryFa3ebb3nV25yB3vrGxsyYP0ASI0fo2r33IjY4wM77tgnf5-ffF1ePsQa1dhCfjepJ9_fD-y9nH2cXl-fJscTEzBRHdjArQlUa4MlBKJhAIDFjWSEhsYIVqZgojCC4oxkwyjojQHCpKSg6AjTD0JHu-1905H9XoOypCOEaECsETsdwTldcbtQt2q8O18tqqPxs-NEqHZMmBwqWpZE0lMyvJCBOSs1KmbNrUTBZ00Ho7ZutXW0hFJ8PaTUSnJ61dq8b_VGIomYgk8GoUCP5HD7FTWxsNOKdb8H2qGwvCSoo5SeiLv9C73Y1Uo5MB29Y-5TWDqFrwdItiaH2i5ndQ6atga1PboLZpfxLwehIwtBZ-dY3uY1TLq8__wX76d_by25R9ecCuQbtuHb3ru_To4hRke9AEH2OA-rYhGKlhHm5uTg3zoMZ5SGHPDpt5G3QzAPQ3djMCVA</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Banerjee, Saikat</creator><creator>Zeng, Lingyao</creator><creator>Schunkert, Heribert</creator><creator>Söding, Johannes</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4437-8833</orcidid><orcidid>https://orcid.org/0000-0001-9642-8244</orcidid><orcidid>https://orcid.org/0000-0001-6428-3001</orcidid></search><sort><creationdate>20181231</creationdate><title>Bayesian multiple logistic regression for case-control GWAS</title><author>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Coronary Artery Disease - genetics</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Gene loci</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics &amp; numerical data</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Logistic regression</topic><topic>Medicine and Health Sciences</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance</topic><topic>Normal distribution</topic><topic>Overtraining</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Saikat</creatorcontrib><creatorcontrib>Zeng, Lingyao</creatorcontrib><creatorcontrib>Schunkert, Heribert</creatorcontrib><creatorcontrib>Söding, Johannes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Saikat</au><au>Zeng, Lingyao</au><au>Schunkert, Heribert</au><au>Söding, Johannes</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian multiple logistic regression for case-control GWAS</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-12-31</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1007856</spage><epage>e1007856</epage><pages>e1007856-e1007856</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30596640</pmid><doi>10.1371/journal.pgen.1007856</doi><orcidid>https://orcid.org/0000-0003-4437-8833</orcidid><orcidid>https://orcid.org/0000-0001-9642-8244</orcidid><orcidid>https://orcid.org/0000-0001-6428-3001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-12, Vol.14 (12), p.e1007856-e1007856
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2251023665
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Cardiovascular disease
Case-Control Studies
Computer Simulation
Coronary Artery Disease - genetics
Coronary vessels
Deep learning
Gene loci
Genetic diversity
Genetic Variation
Genetics
Genome-wide association studies
Genome-Wide Association Study - statistics & numerical data
Genomes
Genotype & phenotype
Genotypes
Humans
Likelihood Functions
Logistic Models
Logistic regression
Medicine and Health Sciences
Models, Genetic
Multifactorial Inheritance
Normal distribution
Overtraining
Phenotype
Phenotypes
Physical Sciences
Polymorphism, Single Nucleotide
Research and Analysis Methods
Sampling
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Software
Statistical analysis
title Bayesian multiple logistic regression for case-control GWAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20multiple%20logistic%20regression%20for%20case-control%20GWAS&rft.jtitle=PLoS%20genetics&rft.au=Banerjee,%20Saikat&rft.date=2018-12-31&rft.volume=14&rft.issue=12&rft.spage=e1007856&rft.epage=e1007856&rft.pages=e1007856-e1007856&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007856&rft_dat=%3Cgale_plos_%3EA568167856%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251023665&rft_id=info:pmid/30596640&rft_galeid=A568167856&rft_doaj_id=oai_doaj_org_article_19cd8f384cb8424685498d32acf48735&rfr_iscdi=true