Bayesian multiple logistic regression for case-control GWAS
Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-12, Vol.14 (12), p.e1007856-e1007856 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007856 |
---|---|
container_issue | 12 |
container_start_page | e1007856 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Banerjee, Saikat Zeng, Lingyao Schunkert, Heribert Söding, Johannes |
description | Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore. |
doi_str_mv | 10.1371/journal.pgen.1007856 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2251023665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568167856</galeid><doaj_id>oai_doaj_org_article_19cd8f384cb8424685498d32acf48735</doaj_id><sourcerecordid>A568167856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPluyoIwLroOLC64flyGTHrayZBpxqQV99-bOt1lKnuh9CIlec57zpuTk2VPMZpjWuA3G9-HVrv5roF2jhEqJBf3smPMOZ0VDLH7B_9H2aMYNwhRLsviYXZEES-FYOg4O32nryFa3ebb3nV25yB3vrGxsyYP0ASI0fo2r33IjY4wM77tgnf5-ffF1ePsQa1dhCfjepJ9_fD-y9nH2cXl-fJscTEzBRHdjArQlUa4MlBKJhAIDFjWSEhsYIVqZgojCC4oxkwyjojQHCpKSg6AjTD0JHu-1905H9XoOypCOEaECsETsdwTldcbtQt2q8O18tqqPxs-NEqHZMmBwqWpZE0lMyvJCBOSs1KmbNrUTBZ00Ho7ZutXW0hFJ8PaTUSnJ61dq8b_VGIomYgk8GoUCP5HD7FTWxsNOKdb8H2qGwvCSoo5SeiLv9C73Y1Uo5MB29Y-5TWDqFrwdItiaH2i5ndQ6atga1PboLZpfxLwehIwtBZ-dY3uY1TLq8__wX76d_by25R9ecCuQbtuHb3ru_To4hRke9AEH2OA-rYhGKlhHm5uTg3zoMZ5SGHPDpt5G3QzAPQ3djMCVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251023665</pqid></control><display><type>article</type><title>Bayesian multiple logistic regression for case-control GWAS</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes</creator><contributor>Epstein, Michael P.</contributor><creatorcontrib>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes ; Epstein, Michael P.</creatorcontrib><description>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007856</identifier><identifier>PMID: 30596640</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Cardiovascular disease ; Case-Control Studies ; Computer Simulation ; Coronary Artery Disease - genetics ; Coronary vessels ; Deep learning ; Gene loci ; Genetic diversity ; Genetic Variation ; Genetics ; Genome-wide association studies ; Genome-Wide Association Study - statistics & numerical data ; Genomes ; Genotype & phenotype ; Genotypes ; Humans ; Likelihood Functions ; Logistic Models ; Logistic regression ; Medicine and Health Sciences ; Models, Genetic ; Multifactorial Inheritance ; Normal distribution ; Overtraining ; Phenotype ; Phenotypes ; Physical Sciences ; Polymorphism, Single Nucleotide ; Research and Analysis Methods ; Sampling ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Statistical analysis</subject><ispartof>PLoS genetics, 2018-12, Vol.14 (12), p.e1007856-e1007856</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Banerjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Banerjee et al 2018 Banerjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</citedby><cites>FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</cites><orcidid>0000-0003-4437-8833 ; 0000-0001-9642-8244 ; 0000-0001-6428-3001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329526/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329526/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30596640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Epstein, Michael P.</contributor><creatorcontrib>Banerjee, Saikat</creatorcontrib><creatorcontrib>Zeng, Lingyao</creatorcontrib><creatorcontrib>Schunkert, Heribert</creatorcontrib><creatorcontrib>Söding, Johannes</creatorcontrib><title>Bayesian multiple logistic regression for case-control GWAS</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Coronary Artery Disease - genetics</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Gene loci</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Logistic regression</subject><subject>Medicine and Health Sciences</subject><subject>Models, Genetic</subject><subject>Multifactorial Inheritance</subject><subject>Normal distribution</subject><subject>Overtraining</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPluyoIwLroOLC64flyGTHrayZBpxqQV99-bOt1lKnuh9CIlec57zpuTk2VPMZpjWuA3G9-HVrv5roF2jhEqJBf3smPMOZ0VDLH7B_9H2aMYNwhRLsviYXZEES-FYOg4O32nryFa3ebb3nV25yB3vrGxsyYP0ASI0fo2r33IjY4wM77tgnf5-ffF1ePsQa1dhCfjepJ9_fD-y9nH2cXl-fJscTEzBRHdjArQlUa4MlBKJhAIDFjWSEhsYIVqZgojCC4oxkwyjojQHCpKSg6AjTD0JHu-1905H9XoOypCOEaECsETsdwTldcbtQt2q8O18tqqPxs-NEqHZMmBwqWpZE0lMyvJCBOSs1KmbNrUTBZ00Ho7ZutXW0hFJ8PaTUSnJ61dq8b_VGIomYgk8GoUCP5HD7FTWxsNOKdb8H2qGwvCSoo5SeiLv9C73Y1Uo5MB29Y-5TWDqFrwdItiaH2i5ndQ6atga1PboLZpfxLwehIwtBZ-dY3uY1TLq8__wX76d_by25R9ecCuQbtuHb3ru_To4hRke9AEH2OA-rYhGKlhHm5uTg3zoMZ5SGHPDpt5G3QzAPQ3djMCVA</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Banerjee, Saikat</creator><creator>Zeng, Lingyao</creator><creator>Schunkert, Heribert</creator><creator>Söding, Johannes</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4437-8833</orcidid><orcidid>https://orcid.org/0000-0001-9642-8244</orcidid><orcidid>https://orcid.org/0000-0001-6428-3001</orcidid></search><sort><creationdate>20181231</creationdate><title>Bayesian multiple logistic regression for case-control GWAS</title><author>Banerjee, Saikat ; Zeng, Lingyao ; Schunkert, Heribert ; Söding, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-36eada01dce98460e61e18f0681ceb0f4c7c62173114845026a5ed3295ee1c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Coronary Artery Disease - genetics</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Gene loci</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Logistic regression</topic><topic>Medicine and Health Sciences</topic><topic>Models, Genetic</topic><topic>Multifactorial Inheritance</topic><topic>Normal distribution</topic><topic>Overtraining</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Saikat</creatorcontrib><creatorcontrib>Zeng, Lingyao</creatorcontrib><creatorcontrib>Schunkert, Heribert</creatorcontrib><creatorcontrib>Söding, Johannes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Saikat</au><au>Zeng, Lingyao</au><au>Schunkert, Heribert</au><au>Söding, Johannes</au><au>Epstein, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian multiple logistic regression for case-control GWAS</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-12-31</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1007856</spage><epage>e1007856</epage><pages>e1007856-e1007856</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30596640</pmid><doi>10.1371/journal.pgen.1007856</doi><orcidid>https://orcid.org/0000-0003-4437-8833</orcidid><orcidid>https://orcid.org/0000-0001-9642-8244</orcidid><orcidid>https://orcid.org/0000-0001-6428-3001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-12, Vol.14 (12), p.e1007856-e1007856 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251023665 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Bayes Theorem Bayesian analysis Biology and Life Sciences Cardiovascular disease Case-Control Studies Computer Simulation Coronary Artery Disease - genetics Coronary vessels Deep learning Gene loci Genetic diversity Genetic Variation Genetics Genome-wide association studies Genome-Wide Association Study - statistics & numerical data Genomes Genotype & phenotype Genotypes Humans Likelihood Functions Logistic Models Logistic regression Medicine and Health Sciences Models, Genetic Multifactorial Inheritance Normal distribution Overtraining Phenotype Phenotypes Physical Sciences Polymorphism, Single Nucleotide Research and Analysis Methods Sampling Single nucleotide polymorphisms Single-nucleotide polymorphism Software Statistical analysis |
title | Bayesian multiple logistic regression for case-control GWAS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20multiple%20logistic%20regression%20for%20case-control%20GWAS&rft.jtitle=PLoS%20genetics&rft.au=Banerjee,%20Saikat&rft.date=2018-12-31&rft.volume=14&rft.issue=12&rft.spage=e1007856&rft.epage=e1007856&rft.pages=e1007856-e1007856&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007856&rft_dat=%3Cgale_plos_%3EA568167856%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251023665&rft_id=info:pmid/30596640&rft_galeid=A568167856&rft_doaj_id=oai_doaj_org_article_19cd8f384cb8424685498d32acf48735&rfr_iscdi=true |