CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse
In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-10, Vol.14 (10), p.e1007657-e1007657 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007657 |
---|---|
container_issue | 10 |
container_start_page | e1007657 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Tian, Hui Billings, Timothy Petkov, Petko M |
description | In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1. |
doi_str_mv | 10.1371/journal.pgen.1007657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2251018467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3fd5077a7f4d4ca6a97aaffd3500ded9</doaj_id><sourcerecordid>2251018467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-1a652a65e92dec0748385825eda3e0cafd3b51a08ca8cb73da43d0e97bc908663</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJC5cs_ojt5IJULQUqVXABqTdrYk8WL4m92AkS_74Om1Yt4mB59ObNmw-9onhJyYZyRd_twxw9DJvDDv2GEqKkUI-KUyoEr1RN6sf34pPiWUp7QrhoWvW0OOGESyFqdVr02-vrLS1dKn2YSkwJ_eRgKPsQMxLHHH74cl7aMHcDVmmK4G3ZRYSfC2WEyQVfLtiILkzOlBFNGDvnjxnnyzHMCZ8XT3oYEr5Y_7Pi-8eLb9vP1dXXT5fb86vKCCanioIULD9smUVDVN3wRjRMoAWOxEBveScokMZAYzrFLdTcEmxVZ1rSSMnPitdH3cMQkl5PlDRjghLa1FJlxuWRYQPs9SG6EeIfHcDpv0CIOw0xLzKg5r0VRClQfW1rAxJaBdDnGQQhFm2btd6v3eZuRGvy7SIMD0QfZrz7oXfht5aMUS5ZFni7CsTwa8Y06dElg8MAHvPZNKNMNm2rmoX65h_q_7erjywTQ0oR-7thKNGLbW6r9GIbvdoml726v8hd0a1P-A2w3MHj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251018467</pqid></control><display><type>article</type><title>CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse</title><source>PLoS</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB*</source><creator>Tian, Hui ; Billings, Timothy ; Petkov, Petko M</creator><contributor>Cohen, Paula E.</contributor><creatorcontrib>Tian, Hui ; Billings, Timothy ; Petkov, Petko M ; Cohen, Paula E.</creatorcontrib><description>In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007657</identifier><identifier>PMID: 30365547</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Biology and Life Sciences ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA damage ; Genes ; Genetics ; Genomes ; Germ cells ; Laboratories ; Lysine ; Mammals ; Medicine and Health Sciences ; Meiosis ; Nucleosomes ; Nucleotide sequence ; Proteins ; Recombination ; Recombination hot spots ; Research and Analysis Methods ; Spermatocytes ; Stem cells ; Yeast</subject><ispartof>PLoS genetics, 2018-10, Vol.14 (10), p.e1007657-e1007657</ispartof><rights>2018 Tian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Tian et al 2018 Tian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-1a652a65e92dec0748385825eda3e0cafd3b51a08ca8cb73da43d0e97bc908663</citedby><cites>FETCH-LOGICAL-c526t-1a652a65e92dec0748385825eda3e0cafd3b51a08ca8cb73da43d0e97bc908663</cites><orcidid>0000-0003-4969-3306 ; 0000-0002-6694-9150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221362/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221362/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30365547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cohen, Paula E.</contributor><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Billings, Timothy</creatorcontrib><creatorcontrib>Petkov, Petko M</creatorcontrib><title>CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1.</description><subject>Animal models</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Germ cells</subject><subject>Laboratories</subject><subject>Lysine</subject><subject>Mammals</subject><subject>Medicine and Health Sciences</subject><subject>Meiosis</subject><subject>Nucleosomes</subject><subject>Nucleotide sequence</subject><subject>Proteins</subject><subject>Recombination</subject><subject>Recombination hot spots</subject><subject>Research and Analysis Methods</subject><subject>Spermatocytes</subject><subject>Stem cells</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJC5cs_ojt5IJULQUqVXABqTdrYk8WL4m92AkS_74Om1Yt4mB59ObNmw-9onhJyYZyRd_twxw9DJvDDv2GEqKkUI-KUyoEr1RN6sf34pPiWUp7QrhoWvW0OOGESyFqdVr02-vrLS1dKn2YSkwJ_eRgKPsQMxLHHH74cl7aMHcDVmmK4G3ZRYSfC2WEyQVfLtiILkzOlBFNGDvnjxnnyzHMCZ8XT3oYEr5Y_7Pi-8eLb9vP1dXXT5fb86vKCCanioIULD9smUVDVN3wRjRMoAWOxEBveScokMZAYzrFLdTcEmxVZ1rSSMnPitdH3cMQkl5PlDRjghLa1FJlxuWRYQPs9SG6EeIfHcDpv0CIOw0xLzKg5r0VRClQfW1rAxJaBdDnGQQhFm2btd6v3eZuRGvy7SIMD0QfZrz7oXfht5aMUS5ZFni7CsTwa8Y06dElg8MAHvPZNKNMNm2rmoX65h_q_7erjywTQ0oR-7thKNGLbW6r9GIbvdoml726v8hd0a1P-A2w3MHj</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Tian, Hui</creator><creator>Billings, Timothy</creator><creator>Petkov, Petko M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4969-3306</orcidid><orcidid>https://orcid.org/0000-0002-6694-9150</orcidid></search><sort><creationdate>20181001</creationdate><title>CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse</title><author>Tian, Hui ; Billings, Timothy ; Petkov, Petko M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-1a652a65e92dec0748385825eda3e0cafd3b51a08ca8cb73da43d0e97bc908663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Germ cells</topic><topic>Laboratories</topic><topic>Lysine</topic><topic>Mammals</topic><topic>Medicine and Health Sciences</topic><topic>Meiosis</topic><topic>Nucleosomes</topic><topic>Nucleotide sequence</topic><topic>Proteins</topic><topic>Recombination</topic><topic>Recombination hot spots</topic><topic>Research and Analysis Methods</topic><topic>Spermatocytes</topic><topic>Stem cells</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Billings, Timothy</creatorcontrib><creatorcontrib>Petkov, Petko M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hui</au><au>Billings, Timothy</au><au>Petkov, Petko M</au><au>Cohen, Paula E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>10</issue><spage>e1007657</spage><epage>e1007657</epage><pages>e1007657-e1007657</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30365547</pmid><doi>10.1371/journal.pgen.1007657</doi><orcidid>https://orcid.org/0000-0003-4969-3306</orcidid><orcidid>https://orcid.org/0000-0002-6694-9150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-10, Vol.14 (10), p.e1007657-e1007657 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2251018467 |
source | PLoS; DOAJ Directory of Open Access Journals; PubMed Central; EZB* |
subjects | Animal models Biology and Life Sciences Chromosomes Deoxyribonucleic acid DNA DNA damage Genes Genetics Genomes Germ cells Laboratories Lysine Mammals Medicine and Health Sciences Meiosis Nucleosomes Nucleotide sequence Proteins Recombination Recombination hot spots Research and Analysis Methods Spermatocytes Stem cells Yeast |
title | CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXXC1%20is%20not%20essential%20for%20normal%20DNA%20double-strand%20break%20formation%20and%20meiotic%20recombination%20in%20mouse&rft.jtitle=PLoS%20genetics&rft.au=Tian,%20Hui&rft.date=2018-10-01&rft.volume=14&rft.issue=10&rft.spage=e1007657&rft.epage=e1007657&rft.pages=e1007657-e1007657&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007657&rft_dat=%3Cproquest_plos_%3E2251018467%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251018467&rft_id=info:pmid/30365547&rft_doaj_id=oai_doaj_org_article_3fd5077a7f4d4ca6a97aaffd3500ded9&rfr_iscdi=true |